Metamath Proof Explorer


Theorem scmatscmid

Description: A scalar matrix can be expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses scmatval.k
|- K = ( Base ` R )
scmatval.a
|- A = ( N Mat R )
scmatval.b
|- B = ( Base ` A )
scmatval.1
|- .1. = ( 1r ` A )
scmatval.t
|- .x. = ( .s ` A )
scmatval.s
|- S = ( N ScMat R )
Assertion scmatscmid
|- ( ( N e. Fin /\ R e. V /\ M e. S ) -> E. c e. K M = ( c .x. .1. ) )

Proof

Step Hyp Ref Expression
1 scmatval.k
 |-  K = ( Base ` R )
2 scmatval.a
 |-  A = ( N Mat R )
3 scmatval.b
 |-  B = ( Base ` A )
4 scmatval.1
 |-  .1. = ( 1r ` A )
5 scmatval.t
 |-  .x. = ( .s ` A )
6 scmatval.s
 |-  S = ( N ScMat R )
7 1 2 3 4 5 6 scmatel
 |-  ( ( N e. Fin /\ R e. V ) -> ( M e. S <-> ( M e. B /\ E. c e. K M = ( c .x. .1. ) ) ) )
8 7 simplbda
 |-  ( ( ( N e. Fin /\ R e. V ) /\ M e. S ) -> E. c e. K M = ( c .x. .1. ) )
9 8 3impa
 |-  ( ( N e. Fin /\ R e. V /\ M e. S ) -> E. c e. K M = ( c .x. .1. ) )