Metamath Proof Explorer


Theorem scmatstrbas

Description: The set of scalar matrices is the base set of the ring of corresponding scalar matrices. (Contributed by AV, 26-Dec-2019)

Ref Expression
Hypotheses scmatstrbas.a
|- A = ( N Mat R )
scmatstrbas.c
|- C = ( N ScMat R )
scmatstrbas.s
|- S = ( A |`s C )
Assertion scmatstrbas
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` S ) = C )

Proof

Step Hyp Ref Expression
1 scmatstrbas.a
 |-  A = ( N Mat R )
2 scmatstrbas.c
 |-  C = ( N ScMat R )
3 scmatstrbas.s
 |-  S = ( A |`s C )
4 eqid
 |-  ( Base ` A ) = ( Base ` A )
5 eqid
 |-  ( Base ` R ) = ( Base ` R )
6 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
7 1 4 5 6 2 scmatsrng
 |-  ( ( N e. Fin /\ R e. Ring ) -> C e. ( SubRing ` A ) )
8 3 subrgbas
 |-  ( C e. ( SubRing ` A ) -> C = ( Base ` S ) )
9 8 eqcomd
 |-  ( C e. ( SubRing ` A ) -> ( Base ` S ) = C )
10 7 9 syl
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( Base ` S ) = C )