Step |
Hyp |
Ref |
Expression |
1 |
|
scmatstrbas.a |
|- A = ( N Mat R ) |
2 |
|
scmatstrbas.c |
|- C = ( N ScMat R ) |
3 |
|
scmatstrbas.s |
|- S = ( A |`s C ) |
4 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
7 |
1 4 5 6 2
|
scmatsrng |
|- ( ( N e. Fin /\ R e. Ring ) -> C e. ( SubRing ` A ) ) |
8 |
3
|
subrgbas |
|- ( C e. ( SubRing ` A ) -> C = ( Base ` S ) ) |
9 |
8
|
eqcomd |
|- ( C e. ( SubRing ` A ) -> ( Base ` S ) = C ) |
10 |
7 9
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` S ) = C ) |