Step |
Hyp |
Ref |
Expression |
1 |
|
scmatval.k |
|- K = ( Base ` R ) |
2 |
|
scmatval.a |
|- A = ( N Mat R ) |
3 |
|
scmatval.b |
|- B = ( Base ` A ) |
4 |
|
scmatval.1 |
|- .1. = ( 1r ` A ) |
5 |
|
scmatval.t |
|- .x. = ( .s ` A ) |
6 |
|
scmatval.s |
|- S = ( N ScMat R ) |
7 |
|
df-scmat |
|- ScMat = ( n e. Fin , r e. _V |-> [_ ( n Mat r ) / a ]_ { m e. ( Base ` a ) | E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) } ) |
8 |
7
|
a1i |
|- ( ( N e. Fin /\ R e. V ) -> ScMat = ( n e. Fin , r e. _V |-> [_ ( n Mat r ) / a ]_ { m e. ( Base ` a ) | E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) } ) ) |
9 |
|
ovexd |
|- ( ( ( N e. Fin /\ R e. V ) /\ ( n = N /\ r = R ) ) -> ( n Mat r ) e. _V ) |
10 |
|
fveq2 |
|- ( a = ( n Mat r ) -> ( Base ` a ) = ( Base ` ( n Mat r ) ) ) |
11 |
|
fveq2 |
|- ( a = ( n Mat r ) -> ( .s ` a ) = ( .s ` ( n Mat r ) ) ) |
12 |
|
eqidd |
|- ( a = ( n Mat r ) -> c = c ) |
13 |
|
fveq2 |
|- ( a = ( n Mat r ) -> ( 1r ` a ) = ( 1r ` ( n Mat r ) ) ) |
14 |
11 12 13
|
oveq123d |
|- ( a = ( n Mat r ) -> ( c ( .s ` a ) ( 1r ` a ) ) = ( c ( .s ` ( n Mat r ) ) ( 1r ` ( n Mat r ) ) ) ) |
15 |
14
|
eqeq2d |
|- ( a = ( n Mat r ) -> ( m = ( c ( .s ` a ) ( 1r ` a ) ) <-> m = ( c ( .s ` ( n Mat r ) ) ( 1r ` ( n Mat r ) ) ) ) ) |
16 |
15
|
rexbidv |
|- ( a = ( n Mat r ) -> ( E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) <-> E. c e. ( Base ` r ) m = ( c ( .s ` ( n Mat r ) ) ( 1r ` ( n Mat r ) ) ) ) ) |
17 |
10 16
|
rabeqbidv |
|- ( a = ( n Mat r ) -> { m e. ( Base ` a ) | E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) } = { m e. ( Base ` ( n Mat r ) ) | E. c e. ( Base ` r ) m = ( c ( .s ` ( n Mat r ) ) ( 1r ` ( n Mat r ) ) ) } ) |
18 |
17
|
adantl |
|- ( ( ( ( N e. Fin /\ R e. V ) /\ ( n = N /\ r = R ) ) /\ a = ( n Mat r ) ) -> { m e. ( Base ` a ) | E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) } = { m e. ( Base ` ( n Mat r ) ) | E. c e. ( Base ` r ) m = ( c ( .s ` ( n Mat r ) ) ( 1r ` ( n Mat r ) ) ) } ) |
19 |
9 18
|
csbied |
|- ( ( ( N e. Fin /\ R e. V ) /\ ( n = N /\ r = R ) ) -> [_ ( n Mat r ) / a ]_ { m e. ( Base ` a ) | E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) } = { m e. ( Base ` ( n Mat r ) ) | E. c e. ( Base ` r ) m = ( c ( .s ` ( n Mat r ) ) ( 1r ` ( n Mat r ) ) ) } ) |
20 |
|
oveq12 |
|- ( ( n = N /\ r = R ) -> ( n Mat r ) = ( N Mat R ) ) |
21 |
20
|
fveq2d |
|- ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = ( Base ` ( N Mat R ) ) ) |
22 |
2
|
fveq2i |
|- ( Base ` A ) = ( Base ` ( N Mat R ) ) |
23 |
3 22
|
eqtri |
|- B = ( Base ` ( N Mat R ) ) |
24 |
21 23
|
eqtr4di |
|- ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = B ) |
25 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
26 |
25 1
|
eqtr4di |
|- ( r = R -> ( Base ` r ) = K ) |
27 |
26
|
adantl |
|- ( ( n = N /\ r = R ) -> ( Base ` r ) = K ) |
28 |
20
|
fveq2d |
|- ( ( n = N /\ r = R ) -> ( .s ` ( n Mat r ) ) = ( .s ` ( N Mat R ) ) ) |
29 |
2
|
fveq2i |
|- ( .s ` A ) = ( .s ` ( N Mat R ) ) |
30 |
5 29
|
eqtri |
|- .x. = ( .s ` ( N Mat R ) ) |
31 |
28 30
|
eqtr4di |
|- ( ( n = N /\ r = R ) -> ( .s ` ( n Mat r ) ) = .x. ) |
32 |
|
eqidd |
|- ( ( n = N /\ r = R ) -> c = c ) |
33 |
20
|
fveq2d |
|- ( ( n = N /\ r = R ) -> ( 1r ` ( n Mat r ) ) = ( 1r ` ( N Mat R ) ) ) |
34 |
2
|
fveq2i |
|- ( 1r ` A ) = ( 1r ` ( N Mat R ) ) |
35 |
4 34
|
eqtri |
|- .1. = ( 1r ` ( N Mat R ) ) |
36 |
33 35
|
eqtr4di |
|- ( ( n = N /\ r = R ) -> ( 1r ` ( n Mat r ) ) = .1. ) |
37 |
31 32 36
|
oveq123d |
|- ( ( n = N /\ r = R ) -> ( c ( .s ` ( n Mat r ) ) ( 1r ` ( n Mat r ) ) ) = ( c .x. .1. ) ) |
38 |
37
|
eqeq2d |
|- ( ( n = N /\ r = R ) -> ( m = ( c ( .s ` ( n Mat r ) ) ( 1r ` ( n Mat r ) ) ) <-> m = ( c .x. .1. ) ) ) |
39 |
27 38
|
rexeqbidv |
|- ( ( n = N /\ r = R ) -> ( E. c e. ( Base ` r ) m = ( c ( .s ` ( n Mat r ) ) ( 1r ` ( n Mat r ) ) ) <-> E. c e. K m = ( c .x. .1. ) ) ) |
40 |
24 39
|
rabeqbidv |
|- ( ( n = N /\ r = R ) -> { m e. ( Base ` ( n Mat r ) ) | E. c e. ( Base ` r ) m = ( c ( .s ` ( n Mat r ) ) ( 1r ` ( n Mat r ) ) ) } = { m e. B | E. c e. K m = ( c .x. .1. ) } ) |
41 |
40
|
adantl |
|- ( ( ( N e. Fin /\ R e. V ) /\ ( n = N /\ r = R ) ) -> { m e. ( Base ` ( n Mat r ) ) | E. c e. ( Base ` r ) m = ( c ( .s ` ( n Mat r ) ) ( 1r ` ( n Mat r ) ) ) } = { m e. B | E. c e. K m = ( c .x. .1. ) } ) |
42 |
19 41
|
eqtrd |
|- ( ( ( N e. Fin /\ R e. V ) /\ ( n = N /\ r = R ) ) -> [_ ( n Mat r ) / a ]_ { m e. ( Base ` a ) | E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) } = { m e. B | E. c e. K m = ( c .x. .1. ) } ) |
43 |
|
simpl |
|- ( ( N e. Fin /\ R e. V ) -> N e. Fin ) |
44 |
|
elex |
|- ( R e. V -> R e. _V ) |
45 |
44
|
adantl |
|- ( ( N e. Fin /\ R e. V ) -> R e. _V ) |
46 |
3
|
fvexi |
|- B e. _V |
47 |
46
|
rabex |
|- { m e. B | E. c e. K m = ( c .x. .1. ) } e. _V |
48 |
47
|
a1i |
|- ( ( N e. Fin /\ R e. V ) -> { m e. B | E. c e. K m = ( c .x. .1. ) } e. _V ) |
49 |
8 42 43 45 48
|
ovmpod |
|- ( ( N e. Fin /\ R e. V ) -> ( N ScMat R ) = { m e. B | E. c e. K m = ( c .x. .1. ) } ) |
50 |
6 49
|
syl5eq |
|- ( ( N e. Fin /\ R e. V ) -> S = { m e. B | E. c e. K m = ( c .x. .1. ) } ) |