| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rabeq |
|- ( A = (/) -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = { x e. (/) | A. y e. A ( rank ` x ) C_ ( rank ` y ) } ) |
| 2 |
|
rab0 |
|- { x e. (/) | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) |
| 3 |
1 2
|
eqtrdi |
|- ( A = (/) -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) ) |
| 4 |
|
n0 |
|- ( A =/= (/) <-> E. x x e. A ) |
| 5 |
|
nfre1 |
|- F/ x E. x e. A ( rank ` x ) = ( rank ` x ) |
| 6 |
|
eqid |
|- ( rank ` x ) = ( rank ` x ) |
| 7 |
|
rspe |
|- ( ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) -> E. x e. A ( rank ` x ) = ( rank ` x ) ) |
| 8 |
6 7
|
mpan2 |
|- ( x e. A -> E. x e. A ( rank ` x ) = ( rank ` x ) ) |
| 9 |
5 8
|
exlimi |
|- ( E. x x e. A -> E. x e. A ( rank ` x ) = ( rank ` x ) ) |
| 10 |
4 9
|
sylbi |
|- ( A =/= (/) -> E. x e. A ( rank ` x ) = ( rank ` x ) ) |
| 11 |
|
fvex |
|- ( rank ` x ) e. _V |
| 12 |
|
eqeq1 |
|- ( y = ( rank ` x ) -> ( y = ( rank ` x ) <-> ( rank ` x ) = ( rank ` x ) ) ) |
| 13 |
12
|
anbi2d |
|- ( y = ( rank ` x ) -> ( ( x e. A /\ y = ( rank ` x ) ) <-> ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) ) ) |
| 14 |
11 13
|
spcev |
|- ( ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) -> E. y ( x e. A /\ y = ( rank ` x ) ) ) |
| 15 |
14
|
eximi |
|- ( E. x ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) -> E. x E. y ( x e. A /\ y = ( rank ` x ) ) ) |
| 16 |
|
excom |
|- ( E. y E. x ( x e. A /\ y = ( rank ` x ) ) <-> E. x E. y ( x e. A /\ y = ( rank ` x ) ) ) |
| 17 |
15 16
|
sylibr |
|- ( E. x ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) -> E. y E. x ( x e. A /\ y = ( rank ` x ) ) ) |
| 18 |
|
df-rex |
|- ( E. x e. A ( rank ` x ) = ( rank ` x ) <-> E. x ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) ) |
| 19 |
|
df-rex |
|- ( E. x e. A y = ( rank ` x ) <-> E. x ( x e. A /\ y = ( rank ` x ) ) ) |
| 20 |
19
|
exbii |
|- ( E. y E. x e. A y = ( rank ` x ) <-> E. y E. x ( x e. A /\ y = ( rank ` x ) ) ) |
| 21 |
17 18 20
|
3imtr4i |
|- ( E. x e. A ( rank ` x ) = ( rank ` x ) -> E. y E. x e. A y = ( rank ` x ) ) |
| 22 |
10 21
|
syl |
|- ( A =/= (/) -> E. y E. x e. A y = ( rank ` x ) ) |
| 23 |
|
abn0 |
|- ( { y | E. x e. A y = ( rank ` x ) } =/= (/) <-> E. y E. x e. A y = ( rank ` x ) ) |
| 24 |
22 23
|
sylibr |
|- ( A =/= (/) -> { y | E. x e. A y = ( rank ` x ) } =/= (/) ) |
| 25 |
11
|
dfiin2 |
|- |^|_ x e. A ( rank ` x ) = |^| { y | E. x e. A y = ( rank ` x ) } |
| 26 |
|
rankon |
|- ( rank ` x ) e. On |
| 27 |
|
eleq1 |
|- ( y = ( rank ` x ) -> ( y e. On <-> ( rank ` x ) e. On ) ) |
| 28 |
26 27
|
mpbiri |
|- ( y = ( rank ` x ) -> y e. On ) |
| 29 |
28
|
rexlimivw |
|- ( E. x e. A y = ( rank ` x ) -> y e. On ) |
| 30 |
29
|
abssi |
|- { y | E. x e. A y = ( rank ` x ) } C_ On |
| 31 |
|
onint |
|- ( ( { y | E. x e. A y = ( rank ` x ) } C_ On /\ { y | E. x e. A y = ( rank ` x ) } =/= (/) ) -> |^| { y | E. x e. A y = ( rank ` x ) } e. { y | E. x e. A y = ( rank ` x ) } ) |
| 32 |
30 31
|
mpan |
|- ( { y | E. x e. A y = ( rank ` x ) } =/= (/) -> |^| { y | E. x e. A y = ( rank ` x ) } e. { y | E. x e. A y = ( rank ` x ) } ) |
| 33 |
25 32
|
eqeltrid |
|- ( { y | E. x e. A y = ( rank ` x ) } =/= (/) -> |^|_ x e. A ( rank ` x ) e. { y | E. x e. A y = ( rank ` x ) } ) |
| 34 |
|
nfii1 |
|- F/_ x |^|_ x e. A ( rank ` x ) |
| 35 |
34
|
nfeq2 |
|- F/ x y = |^|_ x e. A ( rank ` x ) |
| 36 |
|
eqeq1 |
|- ( y = |^|_ x e. A ( rank ` x ) -> ( y = ( rank ` x ) <-> |^|_ x e. A ( rank ` x ) = ( rank ` x ) ) ) |
| 37 |
35 36
|
rexbid |
|- ( y = |^|_ x e. A ( rank ` x ) -> ( E. x e. A y = ( rank ` x ) <-> E. x e. A |^|_ x e. A ( rank ` x ) = ( rank ` x ) ) ) |
| 38 |
37
|
elabg |
|- ( |^|_ x e. A ( rank ` x ) e. { y | E. x e. A y = ( rank ` x ) } -> ( |^|_ x e. A ( rank ` x ) e. { y | E. x e. A y = ( rank ` x ) } <-> E. x e. A |^|_ x e. A ( rank ` x ) = ( rank ` x ) ) ) |
| 39 |
38
|
ibi |
|- ( |^|_ x e. A ( rank ` x ) e. { y | E. x e. A y = ( rank ` x ) } -> E. x e. A |^|_ x e. A ( rank ` x ) = ( rank ` x ) ) |
| 40 |
|
ssid |
|- ( rank ` y ) C_ ( rank ` y ) |
| 41 |
|
fveq2 |
|- ( x = y -> ( rank ` x ) = ( rank ` y ) ) |
| 42 |
41
|
sseq1d |
|- ( x = y -> ( ( rank ` x ) C_ ( rank ` y ) <-> ( rank ` y ) C_ ( rank ` y ) ) ) |
| 43 |
42
|
rspcev |
|- ( ( y e. A /\ ( rank ` y ) C_ ( rank ` y ) ) -> E. x e. A ( rank ` x ) C_ ( rank ` y ) ) |
| 44 |
40 43
|
mpan2 |
|- ( y e. A -> E. x e. A ( rank ` x ) C_ ( rank ` y ) ) |
| 45 |
|
iinss |
|- ( E. x e. A ( rank ` x ) C_ ( rank ` y ) -> |^|_ x e. A ( rank ` x ) C_ ( rank ` y ) ) |
| 46 |
44 45
|
syl |
|- ( y e. A -> |^|_ x e. A ( rank ` x ) C_ ( rank ` y ) ) |
| 47 |
|
sseq1 |
|- ( |^|_ x e. A ( rank ` x ) = ( rank ` x ) -> ( |^|_ x e. A ( rank ` x ) C_ ( rank ` y ) <-> ( rank ` x ) C_ ( rank ` y ) ) ) |
| 48 |
46 47
|
imbitrid |
|- ( |^|_ x e. A ( rank ` x ) = ( rank ` x ) -> ( y e. A -> ( rank ` x ) C_ ( rank ` y ) ) ) |
| 49 |
48
|
ralrimiv |
|- ( |^|_ x e. A ( rank ` x ) = ( rank ` x ) -> A. y e. A ( rank ` x ) C_ ( rank ` y ) ) |
| 50 |
49
|
reximi |
|- ( E. x e. A |^|_ x e. A ( rank ` x ) = ( rank ` x ) -> E. x e. A A. y e. A ( rank ` x ) C_ ( rank ` y ) ) |
| 51 |
24 33 39 50
|
4syl |
|- ( A =/= (/) -> E. x e. A A. y e. A ( rank ` x ) C_ ( rank ` y ) ) |
| 52 |
|
rabn0 |
|- ( { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } =/= (/) <-> E. x e. A A. y e. A ( rank ` x ) C_ ( rank ` y ) ) |
| 53 |
51 52
|
sylibr |
|- ( A =/= (/) -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } =/= (/) ) |
| 54 |
53
|
necon4i |
|- ( { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) -> A = (/) ) |
| 55 |
3 54
|
impbii |
|- ( A = (/) <-> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) ) |