Step |
Hyp |
Ref |
Expression |
1 |
|
rabeq |
|- ( A = (/) -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = { x e. (/) | A. y e. A ( rank ` x ) C_ ( rank ` y ) } ) |
2 |
|
rab0 |
|- { x e. (/) | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) |
3 |
1 2
|
eqtrdi |
|- ( A = (/) -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) ) |
4 |
|
n0 |
|- ( A =/= (/) <-> E. x x e. A ) |
5 |
|
nfre1 |
|- F/ x E. x e. A ( rank ` x ) = ( rank ` x ) |
6 |
|
eqid |
|- ( rank ` x ) = ( rank ` x ) |
7 |
|
rspe |
|- ( ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) -> E. x e. A ( rank ` x ) = ( rank ` x ) ) |
8 |
6 7
|
mpan2 |
|- ( x e. A -> E. x e. A ( rank ` x ) = ( rank ` x ) ) |
9 |
5 8
|
exlimi |
|- ( E. x x e. A -> E. x e. A ( rank ` x ) = ( rank ` x ) ) |
10 |
4 9
|
sylbi |
|- ( A =/= (/) -> E. x e. A ( rank ` x ) = ( rank ` x ) ) |
11 |
|
fvex |
|- ( rank ` x ) e. _V |
12 |
|
eqeq1 |
|- ( y = ( rank ` x ) -> ( y = ( rank ` x ) <-> ( rank ` x ) = ( rank ` x ) ) ) |
13 |
12
|
anbi2d |
|- ( y = ( rank ` x ) -> ( ( x e. A /\ y = ( rank ` x ) ) <-> ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) ) ) |
14 |
11 13
|
spcev |
|- ( ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) -> E. y ( x e. A /\ y = ( rank ` x ) ) ) |
15 |
14
|
eximi |
|- ( E. x ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) -> E. x E. y ( x e. A /\ y = ( rank ` x ) ) ) |
16 |
|
excom |
|- ( E. y E. x ( x e. A /\ y = ( rank ` x ) ) <-> E. x E. y ( x e. A /\ y = ( rank ` x ) ) ) |
17 |
15 16
|
sylibr |
|- ( E. x ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) -> E. y E. x ( x e. A /\ y = ( rank ` x ) ) ) |
18 |
|
df-rex |
|- ( E. x e. A ( rank ` x ) = ( rank ` x ) <-> E. x ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) ) |
19 |
|
df-rex |
|- ( E. x e. A y = ( rank ` x ) <-> E. x ( x e. A /\ y = ( rank ` x ) ) ) |
20 |
19
|
exbii |
|- ( E. y E. x e. A y = ( rank ` x ) <-> E. y E. x ( x e. A /\ y = ( rank ` x ) ) ) |
21 |
17 18 20
|
3imtr4i |
|- ( E. x e. A ( rank ` x ) = ( rank ` x ) -> E. y E. x e. A y = ( rank ` x ) ) |
22 |
10 21
|
syl |
|- ( A =/= (/) -> E. y E. x e. A y = ( rank ` x ) ) |
23 |
|
abn0 |
|- ( { y | E. x e. A y = ( rank ` x ) } =/= (/) <-> E. y E. x e. A y = ( rank ` x ) ) |
24 |
22 23
|
sylibr |
|- ( A =/= (/) -> { y | E. x e. A y = ( rank ` x ) } =/= (/) ) |
25 |
11
|
dfiin2 |
|- |^|_ x e. A ( rank ` x ) = |^| { y | E. x e. A y = ( rank ` x ) } |
26 |
|
rankon |
|- ( rank ` x ) e. On |
27 |
|
eleq1 |
|- ( y = ( rank ` x ) -> ( y e. On <-> ( rank ` x ) e. On ) ) |
28 |
26 27
|
mpbiri |
|- ( y = ( rank ` x ) -> y e. On ) |
29 |
28
|
rexlimivw |
|- ( E. x e. A y = ( rank ` x ) -> y e. On ) |
30 |
29
|
abssi |
|- { y | E. x e. A y = ( rank ` x ) } C_ On |
31 |
|
onint |
|- ( ( { y | E. x e. A y = ( rank ` x ) } C_ On /\ { y | E. x e. A y = ( rank ` x ) } =/= (/) ) -> |^| { y | E. x e. A y = ( rank ` x ) } e. { y | E. x e. A y = ( rank ` x ) } ) |
32 |
30 31
|
mpan |
|- ( { y | E. x e. A y = ( rank ` x ) } =/= (/) -> |^| { y | E. x e. A y = ( rank ` x ) } e. { y | E. x e. A y = ( rank ` x ) } ) |
33 |
25 32
|
eqeltrid |
|- ( { y | E. x e. A y = ( rank ` x ) } =/= (/) -> |^|_ x e. A ( rank ` x ) e. { y | E. x e. A y = ( rank ` x ) } ) |
34 |
|
nfii1 |
|- F/_ x |^|_ x e. A ( rank ` x ) |
35 |
34
|
nfeq2 |
|- F/ x y = |^|_ x e. A ( rank ` x ) |
36 |
|
eqeq1 |
|- ( y = |^|_ x e. A ( rank ` x ) -> ( y = ( rank ` x ) <-> |^|_ x e. A ( rank ` x ) = ( rank ` x ) ) ) |
37 |
35 36
|
rexbid |
|- ( y = |^|_ x e. A ( rank ` x ) -> ( E. x e. A y = ( rank ` x ) <-> E. x e. A |^|_ x e. A ( rank ` x ) = ( rank ` x ) ) ) |
38 |
37
|
elabg |
|- ( |^|_ x e. A ( rank ` x ) e. { y | E. x e. A y = ( rank ` x ) } -> ( |^|_ x e. A ( rank ` x ) e. { y | E. x e. A y = ( rank ` x ) } <-> E. x e. A |^|_ x e. A ( rank ` x ) = ( rank ` x ) ) ) |
39 |
38
|
ibi |
|- ( |^|_ x e. A ( rank ` x ) e. { y | E. x e. A y = ( rank ` x ) } -> E. x e. A |^|_ x e. A ( rank ` x ) = ( rank ` x ) ) |
40 |
|
ssid |
|- ( rank ` y ) C_ ( rank ` y ) |
41 |
|
fveq2 |
|- ( x = y -> ( rank ` x ) = ( rank ` y ) ) |
42 |
41
|
sseq1d |
|- ( x = y -> ( ( rank ` x ) C_ ( rank ` y ) <-> ( rank ` y ) C_ ( rank ` y ) ) ) |
43 |
42
|
rspcev |
|- ( ( y e. A /\ ( rank ` y ) C_ ( rank ` y ) ) -> E. x e. A ( rank ` x ) C_ ( rank ` y ) ) |
44 |
40 43
|
mpan2 |
|- ( y e. A -> E. x e. A ( rank ` x ) C_ ( rank ` y ) ) |
45 |
|
iinss |
|- ( E. x e. A ( rank ` x ) C_ ( rank ` y ) -> |^|_ x e. A ( rank ` x ) C_ ( rank ` y ) ) |
46 |
44 45
|
syl |
|- ( y e. A -> |^|_ x e. A ( rank ` x ) C_ ( rank ` y ) ) |
47 |
|
sseq1 |
|- ( |^|_ x e. A ( rank ` x ) = ( rank ` x ) -> ( |^|_ x e. A ( rank ` x ) C_ ( rank ` y ) <-> ( rank ` x ) C_ ( rank ` y ) ) ) |
48 |
46 47
|
syl5ib |
|- ( |^|_ x e. A ( rank ` x ) = ( rank ` x ) -> ( y e. A -> ( rank ` x ) C_ ( rank ` y ) ) ) |
49 |
48
|
ralrimiv |
|- ( |^|_ x e. A ( rank ` x ) = ( rank ` x ) -> A. y e. A ( rank ` x ) C_ ( rank ` y ) ) |
50 |
49
|
reximi |
|- ( E. x e. A |^|_ x e. A ( rank ` x ) = ( rank ` x ) -> E. x e. A A. y e. A ( rank ` x ) C_ ( rank ` y ) ) |
51 |
24 33 39 50
|
4syl |
|- ( A =/= (/) -> E. x e. A A. y e. A ( rank ` x ) C_ ( rank ` y ) ) |
52 |
|
rabn0 |
|- ( { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } =/= (/) <-> E. x e. A A. y e. A ( rank ` x ) C_ ( rank ` y ) ) |
53 |
51 52
|
sylibr |
|- ( A =/= (/) -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } =/= (/) ) |
54 |
53
|
necon4i |
|- ( { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) -> A = (/) ) |
55 |
3 54
|
impbii |
|- ( A = (/) <-> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) ) |