| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scott0f.1 |
|- F/_ y A |
| 2 |
|
scott0f.2 |
|- F/_ x A |
| 3 |
|
scott0 |
|- ( A = (/) <-> { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) } = (/) ) |
| 4 |
|
nfcv |
|- F/_ z A |
| 5 |
|
nfv |
|- F/ z ( rank ` x ) C_ ( rank ` y ) |
| 6 |
|
nfv |
|- F/ y ( rank ` x ) C_ ( rank ` z ) |
| 7 |
|
fveq2 |
|- ( y = z -> ( rank ` y ) = ( rank ` z ) ) |
| 8 |
7
|
sseq2d |
|- ( y = z -> ( ( rank ` x ) C_ ( rank ` y ) <-> ( rank ` x ) C_ ( rank ` z ) ) ) |
| 9 |
1 4 5 6 8
|
cbvralfw |
|- ( A. y e. A ( rank ` x ) C_ ( rank ` y ) <-> A. z e. A ( rank ` x ) C_ ( rank ` z ) ) |
| 10 |
9
|
rabbii |
|- { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = { x e. A | A. z e. A ( rank ` x ) C_ ( rank ` z ) } |
| 11 |
|
nfcv |
|- F/_ w A |
| 12 |
|
nfv |
|- F/ x ( rank ` w ) C_ ( rank ` z ) |
| 13 |
2 12
|
nfralw |
|- F/ x A. z e. A ( rank ` w ) C_ ( rank ` z ) |
| 14 |
|
nfv |
|- F/ w A. z e. A ( rank ` x ) C_ ( rank ` z ) |
| 15 |
|
fveq2 |
|- ( w = x -> ( rank ` w ) = ( rank ` x ) ) |
| 16 |
15
|
sseq1d |
|- ( w = x -> ( ( rank ` w ) C_ ( rank ` z ) <-> ( rank ` x ) C_ ( rank ` z ) ) ) |
| 17 |
16
|
ralbidv |
|- ( w = x -> ( A. z e. A ( rank ` w ) C_ ( rank ` z ) <-> A. z e. A ( rank ` x ) C_ ( rank ` z ) ) ) |
| 18 |
11 2 13 14 17
|
cbvrabw |
|- { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) } = { x e. A | A. z e. A ( rank ` x ) C_ ( rank ` z ) } |
| 19 |
10 18
|
eqtr4i |
|- { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) } |
| 20 |
19
|
eqeq1i |
|- ( { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) <-> { w e. A | A. z e. A ( rank ` w ) C_ ( rank ` z ) } = (/) ) |
| 21 |
3 20
|
bitr4i |
|- ( A = (/) <-> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) ) |