Step |
Hyp |
Ref |
Expression |
1 |
|
lencl |
|- ( X e. Word V -> ( # ` X ) e. NN0 ) |
2 |
|
elnn0uz |
|- ( ( # ` X ) e. NN0 <-> ( # ` X ) e. ( ZZ>= ` 0 ) ) |
3 |
1 2
|
sylib |
|- ( X e. Word V -> ( # ` X ) e. ( ZZ>= ` 0 ) ) |
4 |
3
|
adantr |
|- ( ( X e. Word V /\ N = ( # ` X ) ) -> ( # ` X ) e. ( ZZ>= ` 0 ) ) |
5 |
|
eleq1 |
|- ( N = ( # ` X ) -> ( N e. ( ZZ>= ` 0 ) <-> ( # ` X ) e. ( ZZ>= ` 0 ) ) ) |
6 |
5
|
adantl |
|- ( ( X e. Word V /\ N = ( # ` X ) ) -> ( N e. ( ZZ>= ` 0 ) <-> ( # ` X ) e. ( ZZ>= ` 0 ) ) ) |
7 |
4 6
|
mpbird |
|- ( ( X e. Word V /\ N = ( # ` X ) ) -> N e. ( ZZ>= ` 0 ) ) |
8 |
7
|
3adant2 |
|- ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) -> N e. ( ZZ>= ` 0 ) ) |
9 |
8
|
adantr |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> N e. ( ZZ>= ` 0 ) ) |
10 |
|
fzisfzounsn |
|- ( N e. ( ZZ>= ` 0 ) -> ( 0 ... N ) = ( ( 0 ..^ N ) u. { N } ) ) |
11 |
9 10
|
syl |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> ( 0 ... N ) = ( ( 0 ..^ N ) u. { N } ) ) |
12 |
11
|
rexeqdv |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> ( E. n e. ( 0 ... N ) y = ( X cyclShift n ) <-> E. n e. ( ( 0 ..^ N ) u. { N } ) y = ( X cyclShift n ) ) ) |
13 |
|
rexun |
|- ( E. n e. ( ( 0 ..^ N ) u. { N } ) y = ( X cyclShift n ) <-> ( E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) \/ E. n e. { N } y = ( X cyclShift n ) ) ) |
14 |
12 13
|
bitrdi |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> ( E. n e. ( 0 ... N ) y = ( X cyclShift n ) <-> ( E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) \/ E. n e. { N } y = ( X cyclShift n ) ) ) ) |
15 |
|
fvex |
|- ( # ` X ) e. _V |
16 |
|
eleq1 |
|- ( N = ( # ` X ) -> ( N e. _V <-> ( # ` X ) e. _V ) ) |
17 |
15 16
|
mpbiri |
|- ( N = ( # ` X ) -> N e. _V ) |
18 |
|
oveq2 |
|- ( n = N -> ( X cyclShift n ) = ( X cyclShift N ) ) |
19 |
18
|
eqeq2d |
|- ( n = N -> ( y = ( X cyclShift n ) <-> y = ( X cyclShift N ) ) ) |
20 |
19
|
rexsng |
|- ( N e. _V -> ( E. n e. { N } y = ( X cyclShift n ) <-> y = ( X cyclShift N ) ) ) |
21 |
17 20
|
syl |
|- ( N = ( # ` X ) -> ( E. n e. { N } y = ( X cyclShift n ) <-> y = ( X cyclShift N ) ) ) |
22 |
21
|
3ad2ant3 |
|- ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) -> ( E. n e. { N } y = ( X cyclShift n ) <-> y = ( X cyclShift N ) ) ) |
23 |
22
|
adantr |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> ( E. n e. { N } y = ( X cyclShift n ) <-> y = ( X cyclShift N ) ) ) |
24 |
|
oveq2 |
|- ( N = ( # ` X ) -> ( X cyclShift N ) = ( X cyclShift ( # ` X ) ) ) |
25 |
24
|
3ad2ant3 |
|- ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) -> ( X cyclShift N ) = ( X cyclShift ( # ` X ) ) ) |
26 |
|
cshwn |
|- ( X e. Word V -> ( X cyclShift ( # ` X ) ) = X ) |
27 |
26
|
3ad2ant1 |
|- ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) -> ( X cyclShift ( # ` X ) ) = X ) |
28 |
25 27
|
eqtrd |
|- ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) -> ( X cyclShift N ) = X ) |
29 |
28
|
eqeq2d |
|- ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) -> ( y = ( X cyclShift N ) <-> y = X ) ) |
30 |
29
|
adantr |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> ( y = ( X cyclShift N ) <-> y = X ) ) |
31 |
|
cshw0 |
|- ( X e. Word V -> ( X cyclShift 0 ) = X ) |
32 |
31
|
3ad2ant1 |
|- ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) -> ( X cyclShift 0 ) = X ) |
33 |
|
lennncl |
|- ( ( X e. Word V /\ X =/= (/) ) -> ( # ` X ) e. NN ) |
34 |
33
|
3adant3 |
|- ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) -> ( # ` X ) e. NN ) |
35 |
|
eleq1 |
|- ( N = ( # ` X ) -> ( N e. NN <-> ( # ` X ) e. NN ) ) |
36 |
35
|
3ad2ant3 |
|- ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) -> ( N e. NN <-> ( # ` X ) e. NN ) ) |
37 |
34 36
|
mpbird |
|- ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) -> N e. NN ) |
38 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ N ) <-> N e. NN ) |
39 |
37 38
|
sylibr |
|- ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) -> 0 e. ( 0 ..^ N ) ) |
40 |
|
oveq2 |
|- ( 0 = n -> ( X cyclShift 0 ) = ( X cyclShift n ) ) |
41 |
40
|
eqeq1d |
|- ( 0 = n -> ( ( X cyclShift 0 ) = X <-> ( X cyclShift n ) = X ) ) |
42 |
41
|
eqcoms |
|- ( n = 0 -> ( ( X cyclShift 0 ) = X <-> ( X cyclShift n ) = X ) ) |
43 |
|
eqcom |
|- ( ( X cyclShift n ) = X <-> X = ( X cyclShift n ) ) |
44 |
42 43
|
bitrdi |
|- ( n = 0 -> ( ( X cyclShift 0 ) = X <-> X = ( X cyclShift n ) ) ) |
45 |
44
|
adantl |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ n = 0 ) -> ( ( X cyclShift 0 ) = X <-> X = ( X cyclShift n ) ) ) |
46 |
45
|
biimpd |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ n = 0 ) -> ( ( X cyclShift 0 ) = X -> X = ( X cyclShift n ) ) ) |
47 |
39 46
|
rspcimedv |
|- ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) -> ( ( X cyclShift 0 ) = X -> E. n e. ( 0 ..^ N ) X = ( X cyclShift n ) ) ) |
48 |
32 47
|
mpd |
|- ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) -> E. n e. ( 0 ..^ N ) X = ( X cyclShift n ) ) |
49 |
48
|
adantr |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> E. n e. ( 0 ..^ N ) X = ( X cyclShift n ) ) |
50 |
49
|
adantr |
|- ( ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) /\ y = X ) -> E. n e. ( 0 ..^ N ) X = ( X cyclShift n ) ) |
51 |
|
eqeq1 |
|- ( y = X -> ( y = ( X cyclShift n ) <-> X = ( X cyclShift n ) ) ) |
52 |
51
|
adantl |
|- ( ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) /\ y = X ) -> ( y = ( X cyclShift n ) <-> X = ( X cyclShift n ) ) ) |
53 |
52
|
rexbidv |
|- ( ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) /\ y = X ) -> ( E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) <-> E. n e. ( 0 ..^ N ) X = ( X cyclShift n ) ) ) |
54 |
50 53
|
mpbird |
|- ( ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) /\ y = X ) -> E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) ) |
55 |
54
|
ex |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> ( y = X -> E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) ) ) |
56 |
30 55
|
sylbid |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> ( y = ( X cyclShift N ) -> E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) ) ) |
57 |
23 56
|
sylbid |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> ( E. n e. { N } y = ( X cyclShift n ) -> E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) ) ) |
58 |
57
|
com12 |
|- ( E. n e. { N } y = ( X cyclShift n ) -> ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) ) ) |
59 |
58
|
jao1i |
|- ( ( E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) \/ E. n e. { N } y = ( X cyclShift n ) ) -> ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) ) ) |
60 |
59
|
com12 |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> ( ( E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) \/ E. n e. { N } y = ( X cyclShift n ) ) -> E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) ) ) |
61 |
14 60
|
sylbid |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> ( E. n e. ( 0 ... N ) y = ( X cyclShift n ) -> E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) ) ) |
62 |
|
fzossfz |
|- ( 0 ..^ N ) C_ ( 0 ... N ) |
63 |
|
ssrexv |
|- ( ( 0 ..^ N ) C_ ( 0 ... N ) -> ( E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) -> E. n e. ( 0 ... N ) y = ( X cyclShift n ) ) ) |
64 |
62 63
|
mp1i |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> ( E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) -> E. n e. ( 0 ... N ) y = ( X cyclShift n ) ) ) |
65 |
61 64
|
impbid |
|- ( ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) /\ y e. Word V ) -> ( E. n e. ( 0 ... N ) y = ( X cyclShift n ) <-> E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) ) ) |
66 |
65
|
rabbidva |
|- ( ( X e. Word V /\ X =/= (/) /\ N = ( # ` X ) ) -> { y e. Word V | E. n e. ( 0 ... N ) y = ( X cyclShift n ) } = { y e. Word V | E. n e. ( 0 ..^ N ) y = ( X cyclShift n ) } ) |