| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( A < A < |
| 2 |
|
scutcut |
|- ( A < ( ( A |s B ) e. No /\ A < |
| 3 |
1 2
|
syl |
|- ( ( A < ( ( A |s B ) e. No /\ A < |
| 4 |
3
|
simp2d |
|- ( ( A < A < |
| 5 |
|
simp2 |
|- ( ( A < C < |
| 6 |
|
ssltun1 |
|- ( ( A < ( A u. C ) < |
| 7 |
4 5 6
|
syl2anc |
|- ( ( A < ( A u. C ) < |
| 8 |
3
|
simp3d |
|- ( ( A < { ( A |s B ) } < |
| 9 |
|
simp3 |
|- ( ( A < { ( A |s B ) } < |
| 10 |
|
ssltun2 |
|- ( ( { ( A |s B ) } < { ( A |s B ) } < |
| 11 |
8 9 10
|
syl2anc |
|- ( ( A < { ( A |s B ) } < |
| 12 |
|
ovex |
|- ( A |s B ) e. _V |
| 13 |
12
|
snnz |
|- { ( A |s B ) } =/= (/) |
| 14 |
|
sslttr |
|- ( ( ( A u. C ) < ( A u. C ) < |
| 15 |
13 14
|
mp3an3 |
|- ( ( ( A u. C ) < ( A u. C ) < |
| 16 |
7 11 15
|
syl2anc |
|- ( ( A < ( A u. C ) < |
| 17 |
|
scutval |
|- ( ( A u. C ) < ( ( A u. C ) |s ( B u. D ) ) = ( iota_ x e. { y e. No | ( ( A u. C ) < |
| 18 |
16 17
|
syl |
|- ( ( A < ( ( A u. C ) |s ( B u. D ) ) = ( iota_ x e. { y e. No | ( ( A u. C ) < |
| 19 |
|
vex |
|- x e. _V |
| 20 |
19
|
elima |
|- ( x e. ( bday " { y e. No | ( ( A u. C ) < E. z e. { y e. No | ( ( A u. C ) < |
| 21 |
|
sneq |
|- ( y = z -> { y } = { z } ) |
| 22 |
21
|
breq2d |
|- ( y = z -> ( ( A u. C ) < ( A u. C ) < |
| 23 |
21
|
breq1d |
|- ( y = z -> ( { y } < { z } < |
| 24 |
22 23
|
anbi12d |
|- ( y = z -> ( ( ( A u. C ) < ( ( A u. C ) < |
| 25 |
24
|
rexrab |
|- ( E. z e. { y e. No | ( ( A u. C ) < E. z e. No ( ( ( A u. C ) < |
| 26 |
20 25
|
bitri |
|- ( x e. ( bday " { y e. No | ( ( A u. C ) < E. z e. No ( ( ( A u. C ) < |
| 27 |
|
simplr |
|- ( ( ( ( A < z e. No ) |
| 28 |
|
bdayfn |
|- bday Fn No |
| 29 |
|
fnbrfvb |
|- ( ( bday Fn No /\ z e. No ) -> ( ( bday ` z ) = x <-> z bday x ) ) |
| 30 |
28 29
|
mpan |
|- ( z e. No -> ( ( bday ` z ) = x <-> z bday x ) ) |
| 31 |
27 30
|
syl |
|- ( ( ( ( A < ( ( bday ` z ) = x <-> z bday x ) ) |
| 32 |
|
simpll1 |
|- ( ( ( ( A < A < |
| 33 |
|
scutbday |
|- ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( A < |
| 34 |
32 33
|
syl |
|- ( ( ( ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( A < |
| 35 |
|
simprl |
|- ( ( ( ( A < ( A u. C ) < |
| 36 |
|
ssun1 |
|- A C_ ( A u. C ) |
| 37 |
|
sssslt1 |
|- ( ( ( A u. C ) < A < |
| 38 |
36 37
|
mpan2 |
|- ( ( A u. C ) < A < |
| 39 |
35 38
|
syl |
|- ( ( ( ( A < A < |
| 40 |
|
simprr |
|- ( ( ( ( A < { z } < |
| 41 |
|
ssun1 |
|- B C_ ( B u. D ) |
| 42 |
|
sssslt2 |
|- ( ( { z } < { z } < |
| 43 |
41 42
|
mpan2 |
|- ( { z } < { z } < |
| 44 |
40 43
|
syl |
|- ( ( ( ( A < { z } < |
| 45 |
39 44
|
jca |
|- ( ( ( ( A < ( A < |
| 46 |
21
|
breq2d |
|- ( y = z -> ( A < A < |
| 47 |
21
|
breq1d |
|- ( y = z -> ( { y } < { z } < |
| 48 |
46 47
|
anbi12d |
|- ( y = z -> ( ( A < ( A < |
| 49 |
48
|
elrab |
|- ( z e. { y e. No | ( A < ( z e. No /\ ( A < |
| 50 |
27 45 49
|
sylanbrc |
|- ( ( ( ( A < z e. { y e. No | ( A < |
| 51 |
|
ssrab2 |
|- { y e. No | ( A < |
| 52 |
|
fnfvima |
|- ( ( bday Fn No /\ { y e. No | ( A < ( bday ` z ) e. ( bday " { y e. No | ( A < |
| 53 |
28 51 52
|
mp3an12 |
|- ( z e. { y e. No | ( A < ( bday ` z ) e. ( bday " { y e. No | ( A < |
| 54 |
50 53
|
syl |
|- ( ( ( ( A < ( bday ` z ) e. ( bday " { y e. No | ( A < |
| 55 |
|
intss1 |
|- ( ( bday ` z ) e. ( bday " { y e. No | ( A < |^| ( bday " { y e. No | ( A < |
| 56 |
54 55
|
syl |
|- ( ( ( ( A < |^| ( bday " { y e. No | ( A < |
| 57 |
34 56
|
eqsstrd |
|- ( ( ( ( A < ( bday ` ( A |s B ) ) C_ ( bday ` z ) ) |
| 58 |
|
sseq2 |
|- ( ( bday ` z ) = x -> ( ( bday ` ( A |s B ) ) C_ ( bday ` z ) <-> ( bday ` ( A |s B ) ) C_ x ) ) |
| 59 |
58
|
biimpd |
|- ( ( bday ` z ) = x -> ( ( bday ` ( A |s B ) ) C_ ( bday ` z ) -> ( bday ` ( A |s B ) ) C_ x ) ) |
| 60 |
59
|
com12 |
|- ( ( bday ` ( A |s B ) ) C_ ( bday ` z ) -> ( ( bday ` z ) = x -> ( bday ` ( A |s B ) ) C_ x ) ) |
| 61 |
57 60
|
syl |
|- ( ( ( ( A < ( ( bday ` z ) = x -> ( bday ` ( A |s B ) ) C_ x ) ) |
| 62 |
31 61
|
sylbird |
|- ( ( ( ( A < ( z bday x -> ( bday ` ( A |s B ) ) C_ x ) ) |
| 63 |
62
|
ex |
|- ( ( ( A < ( ( ( A u. C ) < ( z bday x -> ( bday ` ( A |s B ) ) C_ x ) ) ) |
| 64 |
63
|
impd |
|- ( ( ( A < ( ( ( ( A u. C ) < ( bday ` ( A |s B ) ) C_ x ) ) |
| 65 |
64
|
rexlimdva |
|- ( ( A < ( E. z e. No ( ( ( A u. C ) < ( bday ` ( A |s B ) ) C_ x ) ) |
| 66 |
26 65
|
biimtrid |
|- ( ( A < ( x e. ( bday " { y e. No | ( ( A u. C ) < ( bday ` ( A |s B ) ) C_ x ) ) |
| 67 |
66
|
ralrimiv |
|- ( ( A < A. x e. ( bday " { y e. No | ( ( A u. C ) < |
| 68 |
|
ssint |
|- ( ( bday ` ( A |s B ) ) C_ |^| ( bday " { y e. No | ( ( A u. C ) < A. x e. ( bday " { y e. No | ( ( A u. C ) < |
| 69 |
67 68
|
sylibr |
|- ( ( A < ( bday ` ( A |s B ) ) C_ |^| ( bday " { y e. No | ( ( A u. C ) < |
| 70 |
3
|
simp1d |
|- ( ( A < ( A |s B ) e. No ) |
| 71 |
7 11
|
jca |
|- ( ( A < ( ( A u. C ) < |
| 72 |
|
sneq |
|- ( y = ( A |s B ) -> { y } = { ( A |s B ) } ) |
| 73 |
72
|
breq2d |
|- ( y = ( A |s B ) -> ( ( A u. C ) < ( A u. C ) < |
| 74 |
72
|
breq1d |
|- ( y = ( A |s B ) -> ( { y } < { ( A |s B ) } < |
| 75 |
73 74
|
anbi12d |
|- ( y = ( A |s B ) -> ( ( ( A u. C ) < ( ( A u. C ) < |
| 76 |
75
|
elrab |
|- ( ( A |s B ) e. { y e. No | ( ( A u. C ) < ( ( A |s B ) e. No /\ ( ( A u. C ) < |
| 77 |
70 71 76
|
sylanbrc |
|- ( ( A < ( A |s B ) e. { y e. No | ( ( A u. C ) < |
| 78 |
|
ssrab2 |
|- { y e. No | ( ( A u. C ) < |
| 79 |
|
fnfvima |
|- ( ( bday Fn No /\ { y e. No | ( ( A u. C ) < ( bday ` ( A |s B ) ) e. ( bday " { y e. No | ( ( A u. C ) < |
| 80 |
28 78 79
|
mp3an12 |
|- ( ( A |s B ) e. { y e. No | ( ( A u. C ) < ( bday ` ( A |s B ) ) e. ( bday " { y e. No | ( ( A u. C ) < |
| 81 |
77 80
|
syl |
|- ( ( A < ( bday ` ( A |s B ) ) e. ( bday " { y e. No | ( ( A u. C ) < |
| 82 |
|
intss1 |
|- ( ( bday ` ( A |s B ) ) e. ( bday " { y e. No | ( ( A u. C ) < |^| ( bday " { y e. No | ( ( A u. C ) < |
| 83 |
81 82
|
syl |
|- ( ( A < |^| ( bday " { y e. No | ( ( A u. C ) < |
| 84 |
69 83
|
eqssd |
|- ( ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( ( A u. C ) < |
| 85 |
|
conway |
|- ( ( A u. C ) < E! x e. { y e. No | ( ( A u. C ) < |
| 86 |
16 85
|
syl |
|- ( ( A < E! x e. { y e. No | ( ( A u. C ) < |
| 87 |
|
fveqeq2 |
|- ( x = ( A |s B ) -> ( ( bday ` x ) = |^| ( bday " { y e. No | ( ( A u. C ) < ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( ( A u. C ) < |
| 88 |
87
|
riota2 |
|- ( ( ( A |s B ) e. { y e. No | ( ( A u. C ) < ( ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( ( A u. C ) < ( iota_ x e. { y e. No | ( ( A u. C ) < |
| 89 |
77 86 88
|
syl2anc |
|- ( ( A < ( ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( ( A u. C ) < ( iota_ x e. { y e. No | ( ( A u. C ) < |
| 90 |
84 89
|
mpbid |
|- ( ( A < ( iota_ x e. { y e. No | ( ( A u. C ) < |
| 91 |
90
|
eqcomd |
|- ( ( A < ( A |s B ) = ( iota_ x e. { y e. No | ( ( A u. C ) < |
| 92 |
18 91
|
eqtr4d |
|- ( ( A < ( ( A u. C ) |s ( B u. D ) ) = ( A |s B ) ) |