Metamath Proof Explorer


Theorem sdom1

Description: A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 12-Dec-2024)

Ref Expression
Assertion sdom1
|- ( A ~< 1o <-> A = (/) )

Proof

Step Hyp Ref Expression
1 df1o2
 |-  1o = { (/) }
2 1 breq2i
 |-  ( A ~<_ 1o <-> A ~<_ { (/) } )
3 brdomi
 |-  ( A ~<_ { (/) } -> E. f f : A -1-1-> { (/) } )
4 f1cdmsn
 |-  ( ( f : A -1-1-> { (/) } /\ A =/= (/) ) -> E. x A = { x } )
5 vex
 |-  x e. _V
6 5 ensn1
 |-  { x } ~~ 1o
7 breq1
 |-  ( A = { x } -> ( A ~~ 1o <-> { x } ~~ 1o ) )
8 6 7 mpbiri
 |-  ( A = { x } -> A ~~ 1o )
9 8 exlimiv
 |-  ( E. x A = { x } -> A ~~ 1o )
10 4 9 syl
 |-  ( ( f : A -1-1-> { (/) } /\ A =/= (/) ) -> A ~~ 1o )
11 10 expcom
 |-  ( A =/= (/) -> ( f : A -1-1-> { (/) } -> A ~~ 1o ) )
12 11 exlimdv
 |-  ( A =/= (/) -> ( E. f f : A -1-1-> { (/) } -> A ~~ 1o ) )
13 3 12 syl5
 |-  ( A =/= (/) -> ( A ~<_ { (/) } -> A ~~ 1o ) )
14 2 13 biimtrid
 |-  ( A =/= (/) -> ( A ~<_ 1o -> A ~~ 1o ) )
15 iman
 |-  ( ( A ~<_ 1o -> A ~~ 1o ) <-> -. ( A ~<_ 1o /\ -. A ~~ 1o ) )
16 14 15 sylib
 |-  ( A =/= (/) -> -. ( A ~<_ 1o /\ -. A ~~ 1o ) )
17 brsdom
 |-  ( A ~< 1o <-> ( A ~<_ 1o /\ -. A ~~ 1o ) )
18 16 17 sylnibr
 |-  ( A =/= (/) -> -. A ~< 1o )
19 18 necon4ai
 |-  ( A ~< 1o -> A = (/) )
20 1n0
 |-  1o =/= (/)
21 1oex
 |-  1o e. _V
22 21 0sdom
 |-  ( (/) ~< 1o <-> 1o =/= (/) )
23 20 22 mpbir
 |-  (/) ~< 1o
24 breq1
 |-  ( A = (/) -> ( A ~< 1o <-> (/) ~< 1o ) )
25 23 24 mpbiri
 |-  ( A = (/) -> A ~< 1o )
26 19 25 impbii
 |-  ( A ~< 1o <-> A = (/) )