Step |
Hyp |
Ref |
Expression |
1 |
|
df1o2 |
|- 1o = { (/) } |
2 |
1
|
breq2i |
|- ( A ~<_ 1o <-> A ~<_ { (/) } ) |
3 |
|
brdomi |
|- ( A ~<_ { (/) } -> E. f f : A -1-1-> { (/) } ) |
4 |
|
f1cdmsn |
|- ( ( f : A -1-1-> { (/) } /\ A =/= (/) ) -> E. x A = { x } ) |
5 |
|
vex |
|- x e. _V |
6 |
5
|
ensn1 |
|- { x } ~~ 1o |
7 |
|
breq1 |
|- ( A = { x } -> ( A ~~ 1o <-> { x } ~~ 1o ) ) |
8 |
6 7
|
mpbiri |
|- ( A = { x } -> A ~~ 1o ) |
9 |
8
|
exlimiv |
|- ( E. x A = { x } -> A ~~ 1o ) |
10 |
4 9
|
syl |
|- ( ( f : A -1-1-> { (/) } /\ A =/= (/) ) -> A ~~ 1o ) |
11 |
10
|
expcom |
|- ( A =/= (/) -> ( f : A -1-1-> { (/) } -> A ~~ 1o ) ) |
12 |
11
|
exlimdv |
|- ( A =/= (/) -> ( E. f f : A -1-1-> { (/) } -> A ~~ 1o ) ) |
13 |
3 12
|
syl5 |
|- ( A =/= (/) -> ( A ~<_ { (/) } -> A ~~ 1o ) ) |
14 |
2 13
|
biimtrid |
|- ( A =/= (/) -> ( A ~<_ 1o -> A ~~ 1o ) ) |
15 |
|
iman |
|- ( ( A ~<_ 1o -> A ~~ 1o ) <-> -. ( A ~<_ 1o /\ -. A ~~ 1o ) ) |
16 |
14 15
|
sylib |
|- ( A =/= (/) -> -. ( A ~<_ 1o /\ -. A ~~ 1o ) ) |
17 |
|
brsdom |
|- ( A ~< 1o <-> ( A ~<_ 1o /\ -. A ~~ 1o ) ) |
18 |
16 17
|
sylnibr |
|- ( A =/= (/) -> -. A ~< 1o ) |
19 |
18
|
necon4ai |
|- ( A ~< 1o -> A = (/) ) |
20 |
|
1n0 |
|- 1o =/= (/) |
21 |
|
1oex |
|- 1o e. _V |
22 |
21
|
0sdom |
|- ( (/) ~< 1o <-> 1o =/= (/) ) |
23 |
20 22
|
mpbir |
|- (/) ~< 1o |
24 |
|
breq1 |
|- ( A = (/) -> ( A ~< 1o <-> (/) ~< 1o ) ) |
25 |
23 24
|
mpbiri |
|- ( A = (/) -> A ~< 1o ) |
26 |
19 25
|
impbii |
|- ( A ~< 1o <-> A = (/) ) |