| Step | Hyp | Ref | Expression | 
						
							| 1 |  | domnsym |  |-  ( 1o ~<_ A -> -. A ~< 1o ) | 
						
							| 2 | 1 | con2i |  |-  ( A ~< 1o -> -. 1o ~<_ A ) | 
						
							| 3 |  | 0sdom1dom |  |-  ( (/) ~< A <-> 1o ~<_ A ) | 
						
							| 4 | 2 3 | sylnibr |  |-  ( A ~< 1o -> -. (/) ~< A ) | 
						
							| 5 |  | relsdom |  |-  Rel ~< | 
						
							| 6 | 5 | brrelex1i |  |-  ( A ~< 1o -> A e. _V ) | 
						
							| 7 |  | 0sdomg |  |-  ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) | 
						
							| 8 | 7 | necon2bbid |  |-  ( A e. _V -> ( A = (/) <-> -. (/) ~< A ) ) | 
						
							| 9 | 6 8 | syl |  |-  ( A ~< 1o -> ( A = (/) <-> -. (/) ~< A ) ) | 
						
							| 10 | 4 9 | mpbird |  |-  ( A ~< 1o -> A = (/) ) | 
						
							| 11 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 12 |  | 1oex |  |-  1o e. _V | 
						
							| 13 | 12 | 0sdom |  |-  ( (/) ~< 1o <-> 1o =/= (/) ) | 
						
							| 14 | 11 13 | mpbir |  |-  (/) ~< 1o | 
						
							| 15 |  | breq1 |  |-  ( A = (/) -> ( A ~< 1o <-> (/) ~< 1o ) ) | 
						
							| 16 | 14 15 | mpbiri |  |-  ( A = (/) -> A ~< 1o ) | 
						
							| 17 | 10 16 | impbii |  |-  ( A ~< 1o <-> A = (/) ) |