Step |
Hyp |
Ref |
Expression |
1 |
|
onfin2 |
|- _om = ( On i^i Fin ) |
2 |
|
inss2 |
|- ( On i^i Fin ) C_ Fin |
3 |
1 2
|
eqsstri |
|- _om C_ Fin |
4 |
|
2onn |
|- 2o e. _om |
5 |
3 4
|
sselii |
|- 2o e. Fin |
6 |
|
sdomdom |
|- ( A ~< 2o -> A ~<_ 2o ) |
7 |
|
domfi |
|- ( ( 2o e. Fin /\ A ~<_ 2o ) -> A e. Fin ) |
8 |
5 6 7
|
sylancr |
|- ( A ~< 2o -> A e. Fin ) |
9 |
|
id |
|- ( A = (/) -> A = (/) ) |
10 |
|
0fin |
|- (/) e. Fin |
11 |
9 10
|
eqeltrdi |
|- ( A = (/) -> A e. Fin ) |
12 |
|
1onn |
|- 1o e. _om |
13 |
3 12
|
sselii |
|- 1o e. Fin |
14 |
|
enfi |
|- ( A ~~ 1o -> ( A e. Fin <-> 1o e. Fin ) ) |
15 |
13 14
|
mpbiri |
|- ( A ~~ 1o -> A e. Fin ) |
16 |
11 15
|
jaoi |
|- ( ( A = (/) \/ A ~~ 1o ) -> A e. Fin ) |
17 |
|
df2o3 |
|- 2o = { (/) , 1o } |
18 |
17
|
eleq2i |
|- ( ( card ` A ) e. 2o <-> ( card ` A ) e. { (/) , 1o } ) |
19 |
|
fvex |
|- ( card ` A ) e. _V |
20 |
19
|
elpr |
|- ( ( card ` A ) e. { (/) , 1o } <-> ( ( card ` A ) = (/) \/ ( card ` A ) = 1o ) ) |
21 |
18 20
|
bitri |
|- ( ( card ` A ) e. 2o <-> ( ( card ` A ) = (/) \/ ( card ` A ) = 1o ) ) |
22 |
21
|
a1i |
|- ( A e. Fin -> ( ( card ` A ) e. 2o <-> ( ( card ` A ) = (/) \/ ( card ` A ) = 1o ) ) ) |
23 |
|
cardnn |
|- ( 2o e. _om -> ( card ` 2o ) = 2o ) |
24 |
4 23
|
ax-mp |
|- ( card ` 2o ) = 2o |
25 |
24
|
eleq2i |
|- ( ( card ` A ) e. ( card ` 2o ) <-> ( card ` A ) e. 2o ) |
26 |
|
finnum |
|- ( A e. Fin -> A e. dom card ) |
27 |
|
2on |
|- 2o e. On |
28 |
|
onenon |
|- ( 2o e. On -> 2o e. dom card ) |
29 |
27 28
|
ax-mp |
|- 2o e. dom card |
30 |
|
cardsdom2 |
|- ( ( A e. dom card /\ 2o e. dom card ) -> ( ( card ` A ) e. ( card ` 2o ) <-> A ~< 2o ) ) |
31 |
26 29 30
|
sylancl |
|- ( A e. Fin -> ( ( card ` A ) e. ( card ` 2o ) <-> A ~< 2o ) ) |
32 |
25 31
|
bitr3id |
|- ( A e. Fin -> ( ( card ` A ) e. 2o <-> A ~< 2o ) ) |
33 |
|
cardnueq0 |
|- ( A e. dom card -> ( ( card ` A ) = (/) <-> A = (/) ) ) |
34 |
26 33
|
syl |
|- ( A e. Fin -> ( ( card ` A ) = (/) <-> A = (/) ) ) |
35 |
|
cardnn |
|- ( 1o e. _om -> ( card ` 1o ) = 1o ) |
36 |
12 35
|
ax-mp |
|- ( card ` 1o ) = 1o |
37 |
36
|
eqeq2i |
|- ( ( card ` A ) = ( card ` 1o ) <-> ( card ` A ) = 1o ) |
38 |
|
finnum |
|- ( 1o e. Fin -> 1o e. dom card ) |
39 |
13 38
|
ax-mp |
|- 1o e. dom card |
40 |
|
carden2 |
|- ( ( A e. dom card /\ 1o e. dom card ) -> ( ( card ` A ) = ( card ` 1o ) <-> A ~~ 1o ) ) |
41 |
26 39 40
|
sylancl |
|- ( A e. Fin -> ( ( card ` A ) = ( card ` 1o ) <-> A ~~ 1o ) ) |
42 |
37 41
|
bitr3id |
|- ( A e. Fin -> ( ( card ` A ) = 1o <-> A ~~ 1o ) ) |
43 |
34 42
|
orbi12d |
|- ( A e. Fin -> ( ( ( card ` A ) = (/) \/ ( card ` A ) = 1o ) <-> ( A = (/) \/ A ~~ 1o ) ) ) |
44 |
22 32 43
|
3bitr3d |
|- ( A e. Fin -> ( A ~< 2o <-> ( A = (/) \/ A ~~ 1o ) ) ) |
45 |
8 16 44
|
pm5.21nii |
|- ( A ~< 2o <-> ( A = (/) \/ A ~~ 1o ) ) |