| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onfin2 |  |-  _om = ( On i^i Fin ) | 
						
							| 2 |  | inss2 |  |-  ( On i^i Fin ) C_ Fin | 
						
							| 3 | 1 2 | eqsstri |  |-  _om C_ Fin | 
						
							| 4 |  | 2onn |  |-  2o e. _om | 
						
							| 5 | 3 4 | sselii |  |-  2o e. Fin | 
						
							| 6 |  | sdomdom |  |-  ( A ~< 2o -> A ~<_ 2o ) | 
						
							| 7 |  | domfi |  |-  ( ( 2o e. Fin /\ A ~<_ 2o ) -> A e. Fin ) | 
						
							| 8 | 5 6 7 | sylancr |  |-  ( A ~< 2o -> A e. Fin ) | 
						
							| 9 |  | id |  |-  ( A = (/) -> A = (/) ) | 
						
							| 10 |  | 0fi |  |-  (/) e. Fin | 
						
							| 11 | 9 10 | eqeltrdi |  |-  ( A = (/) -> A e. Fin ) | 
						
							| 12 |  | 1onn |  |-  1o e. _om | 
						
							| 13 | 3 12 | sselii |  |-  1o e. Fin | 
						
							| 14 |  | enfi |  |-  ( A ~~ 1o -> ( A e. Fin <-> 1o e. Fin ) ) | 
						
							| 15 | 13 14 | mpbiri |  |-  ( A ~~ 1o -> A e. Fin ) | 
						
							| 16 | 11 15 | jaoi |  |-  ( ( A = (/) \/ A ~~ 1o ) -> A e. Fin ) | 
						
							| 17 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 18 | 17 | eleq2i |  |-  ( ( card ` A ) e. 2o <-> ( card ` A ) e. { (/) , 1o } ) | 
						
							| 19 |  | fvex |  |-  ( card ` A ) e. _V | 
						
							| 20 | 19 | elpr |  |-  ( ( card ` A ) e. { (/) , 1o } <-> ( ( card ` A ) = (/) \/ ( card ` A ) = 1o ) ) | 
						
							| 21 | 18 20 | bitri |  |-  ( ( card ` A ) e. 2o <-> ( ( card ` A ) = (/) \/ ( card ` A ) = 1o ) ) | 
						
							| 22 | 21 | a1i |  |-  ( A e. Fin -> ( ( card ` A ) e. 2o <-> ( ( card ` A ) = (/) \/ ( card ` A ) = 1o ) ) ) | 
						
							| 23 |  | cardnn |  |-  ( 2o e. _om -> ( card ` 2o ) = 2o ) | 
						
							| 24 | 4 23 | ax-mp |  |-  ( card ` 2o ) = 2o | 
						
							| 25 | 24 | eleq2i |  |-  ( ( card ` A ) e. ( card ` 2o ) <-> ( card ` A ) e. 2o ) | 
						
							| 26 |  | finnum |  |-  ( A e. Fin -> A e. dom card ) | 
						
							| 27 |  | 2on |  |-  2o e. On | 
						
							| 28 |  | onenon |  |-  ( 2o e. On -> 2o e. dom card ) | 
						
							| 29 | 27 28 | ax-mp |  |-  2o e. dom card | 
						
							| 30 |  | cardsdom2 |  |-  ( ( A e. dom card /\ 2o e. dom card ) -> ( ( card ` A ) e. ( card ` 2o ) <-> A ~< 2o ) ) | 
						
							| 31 | 26 29 30 | sylancl |  |-  ( A e. Fin -> ( ( card ` A ) e. ( card ` 2o ) <-> A ~< 2o ) ) | 
						
							| 32 | 25 31 | bitr3id |  |-  ( A e. Fin -> ( ( card ` A ) e. 2o <-> A ~< 2o ) ) | 
						
							| 33 |  | cardnueq0 |  |-  ( A e. dom card -> ( ( card ` A ) = (/) <-> A = (/) ) ) | 
						
							| 34 | 26 33 | syl |  |-  ( A e. Fin -> ( ( card ` A ) = (/) <-> A = (/) ) ) | 
						
							| 35 |  | cardnn |  |-  ( 1o e. _om -> ( card ` 1o ) = 1o ) | 
						
							| 36 | 12 35 | ax-mp |  |-  ( card ` 1o ) = 1o | 
						
							| 37 | 36 | eqeq2i |  |-  ( ( card ` A ) = ( card ` 1o ) <-> ( card ` A ) = 1o ) | 
						
							| 38 |  | finnum |  |-  ( 1o e. Fin -> 1o e. dom card ) | 
						
							| 39 | 13 38 | ax-mp |  |-  1o e. dom card | 
						
							| 40 |  | carden2 |  |-  ( ( A e. dom card /\ 1o e. dom card ) -> ( ( card ` A ) = ( card ` 1o ) <-> A ~~ 1o ) ) | 
						
							| 41 | 26 39 40 | sylancl |  |-  ( A e. Fin -> ( ( card ` A ) = ( card ` 1o ) <-> A ~~ 1o ) ) | 
						
							| 42 | 37 41 | bitr3id |  |-  ( A e. Fin -> ( ( card ` A ) = 1o <-> A ~~ 1o ) ) | 
						
							| 43 | 34 42 | orbi12d |  |-  ( A e. Fin -> ( ( ( card ` A ) = (/) \/ ( card ` A ) = 1o ) <-> ( A = (/) \/ A ~~ 1o ) ) ) | 
						
							| 44 | 22 32 43 | 3bitr3d |  |-  ( A e. Fin -> ( A ~< 2o <-> ( A = (/) \/ A ~~ 1o ) ) ) | 
						
							| 45 | 8 16 44 | pm5.21nii |  |-  ( A ~< 2o <-> ( A = (/) \/ A ~~ 1o ) ) |