| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sdomdom |  |-  ( A ~< B -> A ~<_ B ) | 
						
							| 2 |  | domtrfil |  |-  ( ( A e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) | 
						
							| 3 | 1 2 | syl3an2 |  |-  ( ( A e. Fin /\ A ~< B /\ B ~<_ C ) -> A ~<_ C ) | 
						
							| 4 |  | simp1 |  |-  ( ( A e. Fin /\ B ~<_ C /\ A ~~ C ) -> A e. Fin ) | 
						
							| 5 |  | ensymfib |  |-  ( A e. Fin -> ( A ~~ C <-> C ~~ A ) ) | 
						
							| 6 | 5 | biimpa |  |-  ( ( A e. Fin /\ A ~~ C ) -> C ~~ A ) | 
						
							| 7 | 6 | 3adant2 |  |-  ( ( A e. Fin /\ B ~<_ C /\ A ~~ C ) -> C ~~ A ) | 
						
							| 8 |  | endom |  |-  ( C ~~ A -> C ~<_ A ) | 
						
							| 9 |  | domtrfir |  |-  ( ( A e. Fin /\ B ~<_ C /\ C ~<_ A ) -> B ~<_ A ) | 
						
							| 10 | 8 9 | syl3an3 |  |-  ( ( A e. Fin /\ B ~<_ C /\ C ~~ A ) -> B ~<_ A ) | 
						
							| 11 | 7 10 | syld3an3 |  |-  ( ( A e. Fin /\ B ~<_ C /\ A ~~ C ) -> B ~<_ A ) | 
						
							| 12 |  | domfi |  |-  ( ( A e. Fin /\ B ~<_ A ) -> B e. Fin ) | 
						
							| 13 |  | domnsymfi |  |-  ( ( B e. Fin /\ B ~<_ A ) -> -. A ~< B ) | 
						
							| 14 | 12 13 | sylancom |  |-  ( ( A e. Fin /\ B ~<_ A ) -> -. A ~< B ) | 
						
							| 15 | 4 11 14 | syl2anc |  |-  ( ( A e. Fin /\ B ~<_ C /\ A ~~ C ) -> -. A ~< B ) | 
						
							| 16 | 15 | 3expia |  |-  ( ( A e. Fin /\ B ~<_ C ) -> ( A ~~ C -> -. A ~< B ) ) | 
						
							| 17 | 16 | con2d |  |-  ( ( A e. Fin /\ B ~<_ C ) -> ( A ~< B -> -. A ~~ C ) ) | 
						
							| 18 | 17 | 3impia |  |-  ( ( A e. Fin /\ B ~<_ C /\ A ~< B ) -> -. A ~~ C ) | 
						
							| 19 | 18 | 3com23 |  |-  ( ( A e. Fin /\ A ~< B /\ B ~<_ C ) -> -. A ~~ C ) | 
						
							| 20 |  | brsdom |  |-  ( A ~< C <-> ( A ~<_ C /\ -. A ~~ C ) ) | 
						
							| 21 | 3 19 20 | sylanbrc |  |-  ( ( A e. Fin /\ A ~< B /\ B ~<_ C ) -> A ~< C ) |