| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdomdom |
|- ( A ~< B -> A ~<_ B ) |
| 2 |
|
domtrfil |
|- ( ( A e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |
| 3 |
1 2
|
syl3an2 |
|- ( ( A e. Fin /\ A ~< B /\ B ~<_ C ) -> A ~<_ C ) |
| 4 |
|
simp1 |
|- ( ( A e. Fin /\ B ~<_ C /\ A ~~ C ) -> A e. Fin ) |
| 5 |
|
ensymfib |
|- ( A e. Fin -> ( A ~~ C <-> C ~~ A ) ) |
| 6 |
5
|
biimpa |
|- ( ( A e. Fin /\ A ~~ C ) -> C ~~ A ) |
| 7 |
6
|
3adant2 |
|- ( ( A e. Fin /\ B ~<_ C /\ A ~~ C ) -> C ~~ A ) |
| 8 |
|
endom |
|- ( C ~~ A -> C ~<_ A ) |
| 9 |
|
domtrfir |
|- ( ( A e. Fin /\ B ~<_ C /\ C ~<_ A ) -> B ~<_ A ) |
| 10 |
8 9
|
syl3an3 |
|- ( ( A e. Fin /\ B ~<_ C /\ C ~~ A ) -> B ~<_ A ) |
| 11 |
7 10
|
syld3an3 |
|- ( ( A e. Fin /\ B ~<_ C /\ A ~~ C ) -> B ~<_ A ) |
| 12 |
|
domfi |
|- ( ( A e. Fin /\ B ~<_ A ) -> B e. Fin ) |
| 13 |
|
domnsymfi |
|- ( ( B e. Fin /\ B ~<_ A ) -> -. A ~< B ) |
| 14 |
12 13
|
sylancom |
|- ( ( A e. Fin /\ B ~<_ A ) -> -. A ~< B ) |
| 15 |
4 11 14
|
syl2anc |
|- ( ( A e. Fin /\ B ~<_ C /\ A ~~ C ) -> -. A ~< B ) |
| 16 |
15
|
3expia |
|- ( ( A e. Fin /\ B ~<_ C ) -> ( A ~~ C -> -. A ~< B ) ) |
| 17 |
16
|
con2d |
|- ( ( A e. Fin /\ B ~<_ C ) -> ( A ~< B -> -. A ~~ C ) ) |
| 18 |
17
|
3impia |
|- ( ( A e. Fin /\ B ~<_ C /\ A ~< B ) -> -. A ~~ C ) |
| 19 |
18
|
3com23 |
|- ( ( A e. Fin /\ A ~< B /\ B ~<_ C ) -> -. A ~~ C ) |
| 20 |
|
brsdom |
|- ( A ~< C <-> ( A ~<_ C /\ -. A ~~ C ) ) |
| 21 |
3 19 20
|
sylanbrc |
|- ( ( A e. Fin /\ A ~< B /\ B ~<_ C ) -> A ~< C ) |