Description: For ordinals, strict dominance implies membership. (Contributed by Mario Carneiro, 13-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | sdomel | |- ( ( A e. On /\ B e. On ) -> ( A ~< B -> A e. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdomg | |- ( A e. On -> ( B C_ A -> B ~<_ A ) ) |
|
2 | 1 | adantl | |- ( ( B e. On /\ A e. On ) -> ( B C_ A -> B ~<_ A ) ) |
3 | ontri1 | |- ( ( B e. On /\ A e. On ) -> ( B C_ A <-> -. A e. B ) ) |
|
4 | domtriord | |- ( ( B e. On /\ A e. On ) -> ( B ~<_ A <-> -. A ~< B ) ) |
|
5 | 2 3 4 | 3imtr3d | |- ( ( B e. On /\ A e. On ) -> ( -. A e. B -> -. A ~< B ) ) |
6 | 5 | con4d | |- ( ( B e. On /\ A e. On ) -> ( A ~< B -> A e. B ) ) |
7 | 6 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( A ~< B -> A e. B ) ) |