Description: Equality-like theorem for equinumerosity and strict dominance. (Contributed by NM, 8-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | sdomen2 | |- ( A ~~ B -> ( C ~< A <-> C ~< B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomentr | |- ( ( C ~< A /\ A ~~ B ) -> C ~< B ) |
|
2 | 1 | ancoms | |- ( ( A ~~ B /\ C ~< A ) -> C ~< B ) |
3 | ensym | |- ( A ~~ B -> B ~~ A ) |
|
4 | sdomentr | |- ( ( C ~< B /\ B ~~ A ) -> C ~< A ) |
|
5 | 4 | ancoms | |- ( ( B ~~ A /\ C ~< B ) -> C ~< A ) |
6 | 3 5 | sylan | |- ( ( A ~~ B /\ C ~< B ) -> C ~< A ) |
7 | 2 6 | impbida | |- ( A ~~ B -> ( C ~< A <-> C ~< B ) ) |