Description: Strict dominance is asymmetric. Theorem 21(ii) of Suppes p. 97. (Contributed by NM, 8-Jun-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | sdomnsym | |- ( A ~< B -> -. B ~< A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomnen | |- ( A ~< B -> -. A ~~ B ) |
|
2 | sdomdom | |- ( A ~< B -> A ~<_ B ) |
|
3 | sdomdom | |- ( B ~< A -> B ~<_ A ) |
|
4 | sbth | |- ( ( A ~<_ B /\ B ~<_ A ) -> A ~~ B ) |
|
5 | 2 3 4 | syl2an | |- ( ( A ~< B /\ B ~< A ) -> A ~~ B ) |
6 | 1 5 | mtand | |- ( A ~< B -> -. B ~< A ) |