Metamath Proof Explorer


Theorem sdomsdomcard

Description: A set strictly dominates iff its cardinal strictly dominates. (Contributed by NM, 30-Oct-2003)

Ref Expression
Assertion sdomsdomcard
|- ( A ~< B <-> A ~< ( card ` B ) )

Proof

Step Hyp Ref Expression
1 relsdom
 |-  Rel ~<
2 1 brrelex2i
 |-  ( A ~< B -> B e. _V )
3 numth3
 |-  ( B e. _V -> B e. dom card )
4 cardid2
 |-  ( B e. dom card -> ( card ` B ) ~~ B )
5 ensym
 |-  ( ( card ` B ) ~~ B -> B ~~ ( card ` B ) )
6 2 3 4 5 4syl
 |-  ( A ~< B -> B ~~ ( card ` B ) )
7 sdomentr
 |-  ( ( A ~< B /\ B ~~ ( card ` B ) ) -> A ~< ( card ` B ) )
8 6 7 mpdan
 |-  ( A ~< B -> A ~< ( card ` B ) )
9 sdomsdomcardi
 |-  ( A ~< ( card ` B ) -> A ~< B )
10 8 9 impbii
 |-  ( A ~< B <-> A ~< ( card ` B ) )