Description: Strict dominance is transitive. Theorem 21(iii) of Suppes p. 97. (Contributed by NM, 9-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdomtr | |- ( ( A ~< B /\ B ~< C ) -> A ~< C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | |- ( A ~< B -> A ~<_ B ) |
|
| 2 | domsdomtr | |- ( ( A ~<_ B /\ B ~< C ) -> A ~< C ) |
|
| 3 | 1 2 | sylan | |- ( ( A ~< B /\ B ~< C ) -> A ~< C ) |