Metamath Proof Explorer


Theorem sdrgbas

Description: Base set of a sub-division-ring structure. (Contributed by SN, 19-Feb-2025)

Ref Expression
Hypothesis sdrgbas.b
|- S = ( R |`s A )
Assertion sdrgbas
|- ( A e. ( SubDRing ` R ) -> A = ( Base ` S ) )

Proof

Step Hyp Ref Expression
1 sdrgbas.b
 |-  S = ( R |`s A )
2 eqid
 |-  ( Base ` R ) = ( Base ` R )
3 2 sdrgss
 |-  ( A e. ( SubDRing ` R ) -> A C_ ( Base ` R ) )
4 1 2 ressbas2
 |-  ( A C_ ( Base ` R ) -> A = ( Base ` S ) )
5 3 4 syl
 |-  ( A e. ( SubDRing ` R ) -> A = ( Base ` S ) )