Step |
Hyp |
Ref |
Expression |
1 |
|
sdrgdvcl.i |
|- ./ = ( /r ` R ) |
2 |
|
sdrgdvcl.0 |
|- .0. = ( 0g ` R ) |
3 |
|
sdrgdvcl.a |
|- ( ph -> A e. ( SubDRing ` R ) ) |
4 |
|
sdrgdvcl.x |
|- ( ph -> X e. A ) |
5 |
|
sdrgdvcl.y |
|- ( ph -> Y e. A ) |
6 |
|
sdrgdvcl.1 |
|- ( ph -> Y =/= .0. ) |
7 |
|
issdrg |
|- ( A e. ( SubDRing ` R ) <-> ( R e. DivRing /\ A e. ( SubRing ` R ) /\ ( R |`s A ) e. DivRing ) ) |
8 |
3 7
|
sylib |
|- ( ph -> ( R e. DivRing /\ A e. ( SubRing ` R ) /\ ( R |`s A ) e. DivRing ) ) |
9 |
8
|
simp3d |
|- ( ph -> ( R |`s A ) e. DivRing ) |
10 |
9
|
drngringd |
|- ( ph -> ( R |`s A ) e. Ring ) |
11 |
8
|
simp2d |
|- ( ph -> A e. ( SubRing ` R ) ) |
12 |
|
eqid |
|- ( R |`s A ) = ( R |`s A ) |
13 |
12
|
subrgbas |
|- ( A e. ( SubRing ` R ) -> A = ( Base ` ( R |`s A ) ) ) |
14 |
11 13
|
syl |
|- ( ph -> A = ( Base ` ( R |`s A ) ) ) |
15 |
4 14
|
eleqtrd |
|- ( ph -> X e. ( Base ` ( R |`s A ) ) ) |
16 |
5 14
|
eleqtrd |
|- ( ph -> Y e. ( Base ` ( R |`s A ) ) ) |
17 |
12 2
|
subrg0 |
|- ( A e. ( SubRing ` R ) -> .0. = ( 0g ` ( R |`s A ) ) ) |
18 |
11 17
|
syl |
|- ( ph -> .0. = ( 0g ` ( R |`s A ) ) ) |
19 |
6 18
|
neeqtrd |
|- ( ph -> Y =/= ( 0g ` ( R |`s A ) ) ) |
20 |
|
eqid |
|- ( Base ` ( R |`s A ) ) = ( Base ` ( R |`s A ) ) |
21 |
|
eqid |
|- ( Unit ` ( R |`s A ) ) = ( Unit ` ( R |`s A ) ) |
22 |
|
eqid |
|- ( 0g ` ( R |`s A ) ) = ( 0g ` ( R |`s A ) ) |
23 |
20 21 22
|
drngunit |
|- ( ( R |`s A ) e. DivRing -> ( Y e. ( Unit ` ( R |`s A ) ) <-> ( Y e. ( Base ` ( R |`s A ) ) /\ Y =/= ( 0g ` ( R |`s A ) ) ) ) ) |
24 |
23
|
biimpar |
|- ( ( ( R |`s A ) e. DivRing /\ ( Y e. ( Base ` ( R |`s A ) ) /\ Y =/= ( 0g ` ( R |`s A ) ) ) ) -> Y e. ( Unit ` ( R |`s A ) ) ) |
25 |
9 16 19 24
|
syl12anc |
|- ( ph -> Y e. ( Unit ` ( R |`s A ) ) ) |
26 |
|
eqid |
|- ( /r ` ( R |`s A ) ) = ( /r ` ( R |`s A ) ) |
27 |
20 21 26
|
dvrcl |
|- ( ( ( R |`s A ) e. Ring /\ X e. ( Base ` ( R |`s A ) ) /\ Y e. ( Unit ` ( R |`s A ) ) ) -> ( X ( /r ` ( R |`s A ) ) Y ) e. ( Base ` ( R |`s A ) ) ) |
28 |
10 15 25 27
|
syl3anc |
|- ( ph -> ( X ( /r ` ( R |`s A ) ) Y ) e. ( Base ` ( R |`s A ) ) ) |
29 |
12 1 21 26
|
subrgdv |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. ( Unit ` ( R |`s A ) ) ) -> ( X ./ Y ) = ( X ( /r ` ( R |`s A ) ) Y ) ) |
30 |
11 4 25 29
|
syl3anc |
|- ( ph -> ( X ./ Y ) = ( X ( /r ` ( R |`s A ) ) Y ) ) |
31 |
28 30 14
|
3eltr4d |
|- ( ph -> ( X ./ Y ) e. A ) |