Description: A sub-division-ring is a subring. (Contributed by SN, 19-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | sdrgsubrg | |- ( A e. ( SubDRing ` R ) -> A e. ( SubRing ` R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issdrg | |- ( A e. ( SubDRing ` R ) <-> ( R e. DivRing /\ A e. ( SubRing ` R ) /\ ( R |`s A ) e. DivRing ) ) |
|
2 | 1 | simp2bi | |- ( A e. ( SubDRing ` R ) -> A e. ( SubRing ` R ) ) |