Metamath Proof Explorer


Theorem sdrgunit

Description: A unit of a sub-division-ring is a nonzero element of the subring. (Contributed by SN, 19-Feb-2025)

Ref Expression
Hypotheses sdrgunit.s
|- S = ( R |`s A )
sdrgunit.0
|- .0. = ( 0g ` R )
sdrgunit.u
|- U = ( Unit ` S )
Assertion sdrgunit
|- ( A e. ( SubDRing ` R ) -> ( X e. U <-> ( X e. A /\ X =/= .0. ) ) )

Proof

Step Hyp Ref Expression
1 sdrgunit.s
 |-  S = ( R |`s A )
2 sdrgunit.0
 |-  .0. = ( 0g ` R )
3 sdrgunit.u
 |-  U = ( Unit ` S )
4 1 sdrgdrng
 |-  ( A e. ( SubDRing ` R ) -> S e. DivRing )
5 eqid
 |-  ( Base ` S ) = ( Base ` S )
6 eqid
 |-  ( 0g ` S ) = ( 0g ` S )
7 5 3 6 drngunit
 |-  ( S e. DivRing -> ( X e. U <-> ( X e. ( Base ` S ) /\ X =/= ( 0g ` S ) ) ) )
8 4 7 syl
 |-  ( A e. ( SubDRing ` R ) -> ( X e. U <-> ( X e. ( Base ` S ) /\ X =/= ( 0g ` S ) ) ) )
9 1 sdrgbas
 |-  ( A e. ( SubDRing ` R ) -> A = ( Base ` S ) )
10 9 eleq2d
 |-  ( A e. ( SubDRing ` R ) -> ( X e. A <-> X e. ( Base ` S ) ) )
11 sdrgsubrg
 |-  ( A e. ( SubDRing ` R ) -> A e. ( SubRing ` R ) )
12 1 2 subrg0
 |-  ( A e. ( SubRing ` R ) -> .0. = ( 0g ` S ) )
13 11 12 syl
 |-  ( A e. ( SubDRing ` R ) -> .0. = ( 0g ` S ) )
14 13 neeq2d
 |-  ( A e. ( SubDRing ` R ) -> ( X =/= .0. <-> X =/= ( 0g ` S ) ) )
15 10 14 anbi12d
 |-  ( A e. ( SubDRing ` R ) -> ( ( X e. A /\ X =/= .0. ) <-> ( X e. ( Base ` S ) /\ X =/= ( 0g ` S ) ) ) )
16 8 15 bitr4d
 |-  ( A e. ( SubDRing ` R ) -> ( X e. U <-> ( X e. A /\ X =/= .0. ) ) )