Step |
Hyp |
Ref |
Expression |
1 |
|
sdrgunit.s |
|- S = ( R |`s A ) |
2 |
|
sdrgunit.0 |
|- .0. = ( 0g ` R ) |
3 |
|
sdrgunit.u |
|- U = ( Unit ` S ) |
4 |
1
|
sdrgdrng |
|- ( A e. ( SubDRing ` R ) -> S e. DivRing ) |
5 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
6 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
7 |
5 3 6
|
drngunit |
|- ( S e. DivRing -> ( X e. U <-> ( X e. ( Base ` S ) /\ X =/= ( 0g ` S ) ) ) ) |
8 |
4 7
|
syl |
|- ( A e. ( SubDRing ` R ) -> ( X e. U <-> ( X e. ( Base ` S ) /\ X =/= ( 0g ` S ) ) ) ) |
9 |
1
|
sdrgbas |
|- ( A e. ( SubDRing ` R ) -> A = ( Base ` S ) ) |
10 |
9
|
eleq2d |
|- ( A e. ( SubDRing ` R ) -> ( X e. A <-> X e. ( Base ` S ) ) ) |
11 |
|
sdrgsubrg |
|- ( A e. ( SubDRing ` R ) -> A e. ( SubRing ` R ) ) |
12 |
1 2
|
subrg0 |
|- ( A e. ( SubRing ` R ) -> .0. = ( 0g ` S ) ) |
13 |
11 12
|
syl |
|- ( A e. ( SubDRing ` R ) -> .0. = ( 0g ` S ) ) |
14 |
13
|
neeq2d |
|- ( A e. ( SubDRing ` R ) -> ( X =/= .0. <-> X =/= ( 0g ` S ) ) ) |
15 |
10 14
|
anbi12d |
|- ( A e. ( SubDRing ` R ) -> ( ( X e. A /\ X =/= .0. ) <-> ( X e. ( Base ` S ) /\ X =/= ( 0g ` S ) ) ) ) |
16 |
8 15
|
bitr4d |
|- ( A e. ( SubDRing ` R ) -> ( X e. U <-> ( X e. A /\ X =/= .0. ) ) ) |