Step |
Hyp |
Ref |
Expression |
1 |
|
sectcan.b |
|- B = ( Base ` C ) |
2 |
|
sectcan.s |
|- S = ( Sect ` C ) |
3 |
|
sectcan.c |
|- ( ph -> C e. Cat ) |
4 |
|
sectcan.x |
|- ( ph -> X e. B ) |
5 |
|
sectcan.y |
|- ( ph -> Y e. B ) |
6 |
|
sectcan.1 |
|- ( ph -> G ( X S Y ) F ) |
7 |
|
sectcan.2 |
|- ( ph -> F ( Y S X ) H ) |
8 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
9 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
10 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
11 |
1 8 9 10 2 3 4 5
|
issect |
|- ( ph -> ( G ( X S Y ) F <-> ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) /\ ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) ) ) |
12 |
6 11
|
mpbid |
|- ( ph -> ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) /\ ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) ) |
13 |
12
|
simp1d |
|- ( ph -> G e. ( X ( Hom ` C ) Y ) ) |
14 |
1 8 9 10 2 3 5 4
|
issect |
|- ( ph -> ( F ( Y S X ) H <-> ( F e. ( Y ( Hom ` C ) X ) /\ H e. ( X ( Hom ` C ) Y ) /\ ( H ( <. Y , X >. ( comp ` C ) Y ) F ) = ( ( Id ` C ) ` Y ) ) ) ) |
15 |
7 14
|
mpbid |
|- ( ph -> ( F e. ( Y ( Hom ` C ) X ) /\ H e. ( X ( Hom ` C ) Y ) /\ ( H ( <. Y , X >. ( comp ` C ) Y ) F ) = ( ( Id ` C ) ` Y ) ) ) |
16 |
15
|
simp1d |
|- ( ph -> F e. ( Y ( Hom ` C ) X ) ) |
17 |
15
|
simp2d |
|- ( ph -> H e. ( X ( Hom ` C ) Y ) ) |
18 |
1 8 9 3 4 5 4 13 16 5 17
|
catass |
|- ( ph -> ( ( H ( <. Y , X >. ( comp ` C ) Y ) F ) ( <. X , Y >. ( comp ` C ) Y ) G ) = ( H ( <. X , X >. ( comp ` C ) Y ) ( F ( <. X , Y >. ( comp ` C ) X ) G ) ) ) |
19 |
15
|
simp3d |
|- ( ph -> ( H ( <. Y , X >. ( comp ` C ) Y ) F ) = ( ( Id ` C ) ` Y ) ) |
20 |
19
|
oveq1d |
|- ( ph -> ( ( H ( <. Y , X >. ( comp ` C ) Y ) F ) ( <. X , Y >. ( comp ` C ) Y ) G ) = ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) G ) ) |
21 |
12
|
simp3d |
|- ( ph -> ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) |
22 |
21
|
oveq2d |
|- ( ph -> ( H ( <. X , X >. ( comp ` C ) Y ) ( F ( <. X , Y >. ( comp ` C ) X ) G ) ) = ( H ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) ) |
23 |
18 20 22
|
3eqtr3d |
|- ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) G ) = ( H ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) ) |
24 |
1 8 10 3 4 9 5 13
|
catlid |
|- ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) G ) = G ) |
25 |
1 8 10 3 4 9 5 17
|
catrid |
|- ( ph -> ( H ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) = H ) |
26 |
23 24 25
|
3eqtr3d |
|- ( ph -> G = H ) |