| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sectcan.b |  |-  B = ( Base ` C ) | 
						
							| 2 |  | sectcan.s |  |-  S = ( Sect ` C ) | 
						
							| 3 |  | sectcan.c |  |-  ( ph -> C e. Cat ) | 
						
							| 4 |  | sectcan.x |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | sectcan.y |  |-  ( ph -> Y e. B ) | 
						
							| 6 |  | sectcan.1 |  |-  ( ph -> G ( X S Y ) F ) | 
						
							| 7 |  | sectcan.2 |  |-  ( ph -> F ( Y S X ) H ) | 
						
							| 8 |  | eqid |  |-  ( Hom ` C ) = ( Hom ` C ) | 
						
							| 9 |  | eqid |  |-  ( comp ` C ) = ( comp ` C ) | 
						
							| 10 |  | eqid |  |-  ( Id ` C ) = ( Id ` C ) | 
						
							| 11 | 1 8 9 10 2 3 4 5 | issect |  |-  ( ph -> ( G ( X S Y ) F <-> ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) /\ ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) ) ) | 
						
							| 12 | 6 11 | mpbid |  |-  ( ph -> ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) /\ ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) ) | 
						
							| 13 | 12 | simp1d |  |-  ( ph -> G e. ( X ( Hom ` C ) Y ) ) | 
						
							| 14 | 1 8 9 10 2 3 5 4 | issect |  |-  ( ph -> ( F ( Y S X ) H <-> ( F e. ( Y ( Hom ` C ) X ) /\ H e. ( X ( Hom ` C ) Y ) /\ ( H ( <. Y , X >. ( comp ` C ) Y ) F ) = ( ( Id ` C ) ` Y ) ) ) ) | 
						
							| 15 | 7 14 | mpbid |  |-  ( ph -> ( F e. ( Y ( Hom ` C ) X ) /\ H e. ( X ( Hom ` C ) Y ) /\ ( H ( <. Y , X >. ( comp ` C ) Y ) F ) = ( ( Id ` C ) ` Y ) ) ) | 
						
							| 16 | 15 | simp1d |  |-  ( ph -> F e. ( Y ( Hom ` C ) X ) ) | 
						
							| 17 | 15 | simp2d |  |-  ( ph -> H e. ( X ( Hom ` C ) Y ) ) | 
						
							| 18 | 1 8 9 3 4 5 4 13 16 5 17 | catass |  |-  ( ph -> ( ( H ( <. Y , X >. ( comp ` C ) Y ) F ) ( <. X , Y >. ( comp ` C ) Y ) G ) = ( H ( <. X , X >. ( comp ` C ) Y ) ( F ( <. X , Y >. ( comp ` C ) X ) G ) ) ) | 
						
							| 19 | 15 | simp3d |  |-  ( ph -> ( H ( <. Y , X >. ( comp ` C ) Y ) F ) = ( ( Id ` C ) ` Y ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( ph -> ( ( H ( <. Y , X >. ( comp ` C ) Y ) F ) ( <. X , Y >. ( comp ` C ) Y ) G ) = ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) G ) ) | 
						
							| 21 | 12 | simp3d |  |-  ( ph -> ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) | 
						
							| 22 | 21 | oveq2d |  |-  ( ph -> ( H ( <. X , X >. ( comp ` C ) Y ) ( F ( <. X , Y >. ( comp ` C ) X ) G ) ) = ( H ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) ) | 
						
							| 23 | 18 20 22 | 3eqtr3d |  |-  ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) G ) = ( H ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) ) | 
						
							| 24 | 1 8 10 3 4 9 5 13 | catlid |  |-  ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) G ) = G ) | 
						
							| 25 | 1 8 10 3 4 9 5 17 | catrid |  |-  ( ph -> ( H ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) = H ) | 
						
							| 26 | 23 24 25 | 3eqtr3d |  |-  ( ph -> G = H ) |