| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sectco.b |  |-  B = ( Base ` C ) | 
						
							| 2 |  | sectco.o |  |-  .x. = ( comp ` C ) | 
						
							| 3 |  | sectco.s |  |-  S = ( Sect ` C ) | 
						
							| 4 |  | sectco.c |  |-  ( ph -> C e. Cat ) | 
						
							| 5 |  | sectco.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | sectco.y |  |-  ( ph -> Y e. B ) | 
						
							| 7 |  | sectco.z |  |-  ( ph -> Z e. B ) | 
						
							| 8 |  | sectco.1 |  |-  ( ph -> F ( X S Y ) G ) | 
						
							| 9 |  | sectco.2 |  |-  ( ph -> H ( Y S Z ) K ) | 
						
							| 10 |  | eqid |  |-  ( Hom ` C ) = ( Hom ` C ) | 
						
							| 11 |  | eqid |  |-  ( Id ` C ) = ( Id ` C ) | 
						
							| 12 | 1 10 2 11 3 4 5 6 | issect |  |-  ( ph -> ( F ( X S Y ) G <-> ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( ( Id ` C ) ` X ) ) ) ) | 
						
							| 13 | 8 12 | mpbid |  |-  ( ph -> ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( ( Id ` C ) ` X ) ) ) | 
						
							| 14 | 13 | simp1d |  |-  ( ph -> F e. ( X ( Hom ` C ) Y ) ) | 
						
							| 15 | 1 10 2 11 3 4 6 7 | issect |  |-  ( ph -> ( H ( Y S Z ) K <-> ( H e. ( Y ( Hom ` C ) Z ) /\ K e. ( Z ( Hom ` C ) Y ) /\ ( K ( <. Y , Z >. .x. Y ) H ) = ( ( Id ` C ) ` Y ) ) ) ) | 
						
							| 16 | 9 15 | mpbid |  |-  ( ph -> ( H e. ( Y ( Hom ` C ) Z ) /\ K e. ( Z ( Hom ` C ) Y ) /\ ( K ( <. Y , Z >. .x. Y ) H ) = ( ( Id ` C ) ` Y ) ) ) | 
						
							| 17 | 16 | simp1d |  |-  ( ph -> H e. ( Y ( Hom ` C ) Z ) ) | 
						
							| 18 | 1 10 2 4 5 6 7 14 17 | catcocl |  |-  ( ph -> ( H ( <. X , Y >. .x. Z ) F ) e. ( X ( Hom ` C ) Z ) ) | 
						
							| 19 | 16 | simp2d |  |-  ( ph -> K e. ( Z ( Hom ` C ) Y ) ) | 
						
							| 20 | 13 | simp2d |  |-  ( ph -> G e. ( Y ( Hom ` C ) X ) ) | 
						
							| 21 | 1 10 2 4 5 7 6 18 19 5 20 | catass |  |-  ( ph -> ( ( G ( <. Z , Y >. .x. X ) K ) ( <. X , Z >. .x. X ) ( H ( <. X , Y >. .x. Z ) F ) ) = ( G ( <. X , Y >. .x. X ) ( K ( <. X , Z >. .x. Y ) ( H ( <. X , Y >. .x. Z ) F ) ) ) ) | 
						
							| 22 | 16 | simp3d |  |-  ( ph -> ( K ( <. Y , Z >. .x. Y ) H ) = ( ( Id ` C ) ` Y ) ) | 
						
							| 23 | 22 | oveq1d |  |-  ( ph -> ( ( K ( <. Y , Z >. .x. Y ) H ) ( <. X , Y >. .x. Y ) F ) = ( ( ( Id ` C ) ` Y ) ( <. X , Y >. .x. Y ) F ) ) | 
						
							| 24 | 1 10 2 4 5 6 7 14 17 6 19 | catass |  |-  ( ph -> ( ( K ( <. Y , Z >. .x. Y ) H ) ( <. X , Y >. .x. Y ) F ) = ( K ( <. X , Z >. .x. Y ) ( H ( <. X , Y >. .x. Z ) F ) ) ) | 
						
							| 25 | 1 10 11 4 5 2 6 14 | catlid |  |-  ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. .x. Y ) F ) = F ) | 
						
							| 26 | 23 24 25 | 3eqtr3d |  |-  ( ph -> ( K ( <. X , Z >. .x. Y ) ( H ( <. X , Y >. .x. Z ) F ) ) = F ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ph -> ( G ( <. X , Y >. .x. X ) ( K ( <. X , Z >. .x. Y ) ( H ( <. X , Y >. .x. Z ) F ) ) ) = ( G ( <. X , Y >. .x. X ) F ) ) | 
						
							| 28 | 13 | simp3d |  |-  ( ph -> ( G ( <. X , Y >. .x. X ) F ) = ( ( Id ` C ) ` X ) ) | 
						
							| 29 | 21 27 28 | 3eqtrd |  |-  ( ph -> ( ( G ( <. Z , Y >. .x. X ) K ) ( <. X , Z >. .x. X ) ( H ( <. X , Y >. .x. Z ) F ) ) = ( ( Id ` C ) ` X ) ) | 
						
							| 30 | 1 10 2 4 7 6 5 19 20 | catcocl |  |-  ( ph -> ( G ( <. Z , Y >. .x. X ) K ) e. ( Z ( Hom ` C ) X ) ) | 
						
							| 31 | 1 10 2 11 3 4 5 7 18 30 | issect2 |  |-  ( ph -> ( ( H ( <. X , Y >. .x. Z ) F ) ( X S Z ) ( G ( <. Z , Y >. .x. X ) K ) <-> ( ( G ( <. Z , Y >. .x. X ) K ) ( <. X , Z >. .x. X ) ( H ( <. X , Y >. .x. Z ) F ) ) = ( ( Id ` C ) ` X ) ) ) | 
						
							| 32 | 29 31 | mpbird |  |-  ( ph -> ( H ( <. X , Y >. .x. Z ) F ) ( X S Z ) ( G ( <. Z , Y >. .x. X ) K ) ) |