Step |
Hyp |
Ref |
Expression |
1 |
|
sectepi.b |
|- B = ( Base ` C ) |
2 |
|
sectepi.e |
|- E = ( Epi ` C ) |
3 |
|
sectepi.s |
|- S = ( Sect ` C ) |
4 |
|
sectepi.c |
|- ( ph -> C e. Cat ) |
5 |
|
sectepi.x |
|- ( ph -> X e. B ) |
6 |
|
sectepi.y |
|- ( ph -> Y e. B ) |
7 |
|
sectepi.1 |
|- ( ph -> F ( X S Y ) G ) |
8 |
|
eqid |
|- ( oppCat ` C ) = ( oppCat ` C ) |
9 |
8 1
|
oppcbas |
|- B = ( Base ` ( oppCat ` C ) ) |
10 |
|
eqid |
|- ( Mono ` ( oppCat ` C ) ) = ( Mono ` ( oppCat ` C ) ) |
11 |
|
eqid |
|- ( Sect ` ( oppCat ` C ) ) = ( Sect ` ( oppCat ` C ) ) |
12 |
8
|
oppccat |
|- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
13 |
4 12
|
syl |
|- ( ph -> ( oppCat ` C ) e. Cat ) |
14 |
1 8 4 5 6 3 11
|
oppcsect |
|- ( ph -> ( G ( X ( Sect ` ( oppCat ` C ) ) Y ) F <-> F ( X S Y ) G ) ) |
15 |
7 14
|
mpbird |
|- ( ph -> G ( X ( Sect ` ( oppCat ` C ) ) Y ) F ) |
16 |
9 10 11 13 5 6 15
|
sectmon |
|- ( ph -> G e. ( X ( Mono ` ( oppCat ` C ) ) Y ) ) |
17 |
8 4 10 2
|
oppcmon |
|- ( ph -> ( X ( Mono ` ( oppCat ` C ) ) Y ) = ( Y E X ) ) |
18 |
16 17
|
eleqtrd |
|- ( ph -> G e. ( Y E X ) ) |