| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sectepi.b |
|- B = ( Base ` C ) |
| 2 |
|
sectepi.e |
|- E = ( Epi ` C ) |
| 3 |
|
sectepi.s |
|- S = ( Sect ` C ) |
| 4 |
|
sectepi.c |
|- ( ph -> C e. Cat ) |
| 5 |
|
sectepi.x |
|- ( ph -> X e. B ) |
| 6 |
|
sectepi.y |
|- ( ph -> Y e. B ) |
| 7 |
|
sectepi.1 |
|- ( ph -> F ( X S Y ) G ) |
| 8 |
|
eqid |
|- ( oppCat ` C ) = ( oppCat ` C ) |
| 9 |
8 1
|
oppcbas |
|- B = ( Base ` ( oppCat ` C ) ) |
| 10 |
|
eqid |
|- ( Mono ` ( oppCat ` C ) ) = ( Mono ` ( oppCat ` C ) ) |
| 11 |
|
eqid |
|- ( Sect ` ( oppCat ` C ) ) = ( Sect ` ( oppCat ` C ) ) |
| 12 |
8
|
oppccat |
|- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
| 13 |
4 12
|
syl |
|- ( ph -> ( oppCat ` C ) e. Cat ) |
| 14 |
1 8 4 5 6 3 11
|
oppcsect |
|- ( ph -> ( G ( X ( Sect ` ( oppCat ` C ) ) Y ) F <-> F ( X S Y ) G ) ) |
| 15 |
7 14
|
mpbird |
|- ( ph -> G ( X ( Sect ` ( oppCat ` C ) ) Y ) F ) |
| 16 |
9 10 11 13 5 6 15
|
sectmon |
|- ( ph -> G e. ( X ( Mono ` ( oppCat ` C ) ) Y ) ) |
| 17 |
8 4 10 2
|
oppcmon |
|- ( ph -> ( X ( Mono ` ( oppCat ` C ) ) Y ) = ( Y E X ) ) |
| 18 |
16 17
|
eleqtrd |
|- ( ph -> G e. ( Y E X ) ) |