| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issect.b |  |-  B = ( Base ` C ) | 
						
							| 2 |  | issect.h |  |-  H = ( Hom ` C ) | 
						
							| 3 |  | issect.o |  |-  .x. = ( comp ` C ) | 
						
							| 4 |  | issect.i |  |-  .1. = ( Id ` C ) | 
						
							| 5 |  | issect.s |  |-  S = ( Sect ` C ) | 
						
							| 6 |  | issect.c |  |-  ( ph -> C e. Cat ) | 
						
							| 7 |  | issect.x |  |-  ( ph -> X e. B ) | 
						
							| 8 |  | issect.y |  |-  ( ph -> Y e. B ) | 
						
							| 9 |  | fveq2 |  |-  ( c = C -> ( Base ` c ) = ( Base ` C ) ) | 
						
							| 10 | 9 1 | eqtr4di |  |-  ( c = C -> ( Base ` c ) = B ) | 
						
							| 11 |  | fvexd |  |-  ( c = C -> ( Hom ` c ) e. _V ) | 
						
							| 12 |  | fveq2 |  |-  ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) | 
						
							| 13 | 12 2 | eqtr4di |  |-  ( c = C -> ( Hom ` c ) = H ) | 
						
							| 14 |  | simpr |  |-  ( ( c = C /\ h = H ) -> h = H ) | 
						
							| 15 | 14 | oveqd |  |-  ( ( c = C /\ h = H ) -> ( x h y ) = ( x H y ) ) | 
						
							| 16 | 15 | eleq2d |  |-  ( ( c = C /\ h = H ) -> ( f e. ( x h y ) <-> f e. ( x H y ) ) ) | 
						
							| 17 | 14 | oveqd |  |-  ( ( c = C /\ h = H ) -> ( y h x ) = ( y H x ) ) | 
						
							| 18 | 17 | eleq2d |  |-  ( ( c = C /\ h = H ) -> ( g e. ( y h x ) <-> g e. ( y H x ) ) ) | 
						
							| 19 | 16 18 | anbi12d |  |-  ( ( c = C /\ h = H ) -> ( ( f e. ( x h y ) /\ g e. ( y h x ) ) <-> ( f e. ( x H y ) /\ g e. ( y H x ) ) ) ) | 
						
							| 20 |  | simpl |  |-  ( ( c = C /\ h = H ) -> c = C ) | 
						
							| 21 | 20 | fveq2d |  |-  ( ( c = C /\ h = H ) -> ( comp ` c ) = ( comp ` C ) ) | 
						
							| 22 | 21 3 | eqtr4di |  |-  ( ( c = C /\ h = H ) -> ( comp ` c ) = .x. ) | 
						
							| 23 | 22 | oveqd |  |-  ( ( c = C /\ h = H ) -> ( <. x , y >. ( comp ` c ) x ) = ( <. x , y >. .x. x ) ) | 
						
							| 24 | 23 | oveqd |  |-  ( ( c = C /\ h = H ) -> ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( g ( <. x , y >. .x. x ) f ) ) | 
						
							| 25 | 20 | fveq2d |  |-  ( ( c = C /\ h = H ) -> ( Id ` c ) = ( Id ` C ) ) | 
						
							| 26 | 25 4 | eqtr4di |  |-  ( ( c = C /\ h = H ) -> ( Id ` c ) = .1. ) | 
						
							| 27 | 26 | fveq1d |  |-  ( ( c = C /\ h = H ) -> ( ( Id ` c ) ` x ) = ( .1. ` x ) ) | 
						
							| 28 | 24 27 | eqeq12d |  |-  ( ( c = C /\ h = H ) -> ( ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) <-> ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) ) | 
						
							| 29 | 19 28 | anbi12d |  |-  ( ( c = C /\ h = H ) -> ( ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) <-> ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) ) ) | 
						
							| 30 | 11 13 29 | sbcied2 |  |-  ( c = C -> ( [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) <-> ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) ) ) | 
						
							| 31 | 30 | opabbidv |  |-  ( c = C -> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } = { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) | 
						
							| 32 | 10 10 31 | mpoeq123dv |  |-  ( c = C -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) | 
						
							| 33 |  | df-sect |  |-  Sect = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) ) | 
						
							| 34 | 1 | fvexi |  |-  B e. _V | 
						
							| 35 | 34 34 | mpoex |  |-  ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) e. _V | 
						
							| 36 | 32 33 35 | fvmpt |  |-  ( C e. Cat -> ( Sect ` C ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) | 
						
							| 37 | 6 36 | syl |  |-  ( ph -> ( Sect ` C ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) | 
						
							| 38 | 5 37 | eqtrid |  |-  ( ph -> S = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |