Step |
Hyp |
Ref |
Expression |
1 |
|
issect.b |
|- B = ( Base ` C ) |
2 |
|
issect.h |
|- H = ( Hom ` C ) |
3 |
|
issect.o |
|- .x. = ( comp ` C ) |
4 |
|
issect.i |
|- .1. = ( Id ` C ) |
5 |
|
issect.s |
|- S = ( Sect ` C ) |
6 |
|
issect.c |
|- ( ph -> C e. Cat ) |
7 |
|
issect.x |
|- ( ph -> X e. B ) |
8 |
|
issect.y |
|- ( ph -> Y e. B ) |
9 |
|
fveq2 |
|- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
10 |
9 1
|
eqtr4di |
|- ( c = C -> ( Base ` c ) = B ) |
11 |
|
fvexd |
|- ( c = C -> ( Hom ` c ) e. _V ) |
12 |
|
fveq2 |
|- ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) |
13 |
12 2
|
eqtr4di |
|- ( c = C -> ( Hom ` c ) = H ) |
14 |
|
simpr |
|- ( ( c = C /\ h = H ) -> h = H ) |
15 |
14
|
oveqd |
|- ( ( c = C /\ h = H ) -> ( x h y ) = ( x H y ) ) |
16 |
15
|
eleq2d |
|- ( ( c = C /\ h = H ) -> ( f e. ( x h y ) <-> f e. ( x H y ) ) ) |
17 |
14
|
oveqd |
|- ( ( c = C /\ h = H ) -> ( y h x ) = ( y H x ) ) |
18 |
17
|
eleq2d |
|- ( ( c = C /\ h = H ) -> ( g e. ( y h x ) <-> g e. ( y H x ) ) ) |
19 |
16 18
|
anbi12d |
|- ( ( c = C /\ h = H ) -> ( ( f e. ( x h y ) /\ g e. ( y h x ) ) <-> ( f e. ( x H y ) /\ g e. ( y H x ) ) ) ) |
20 |
|
simpl |
|- ( ( c = C /\ h = H ) -> c = C ) |
21 |
20
|
fveq2d |
|- ( ( c = C /\ h = H ) -> ( comp ` c ) = ( comp ` C ) ) |
22 |
21 3
|
eqtr4di |
|- ( ( c = C /\ h = H ) -> ( comp ` c ) = .x. ) |
23 |
22
|
oveqd |
|- ( ( c = C /\ h = H ) -> ( <. x , y >. ( comp ` c ) x ) = ( <. x , y >. .x. x ) ) |
24 |
23
|
oveqd |
|- ( ( c = C /\ h = H ) -> ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( g ( <. x , y >. .x. x ) f ) ) |
25 |
20
|
fveq2d |
|- ( ( c = C /\ h = H ) -> ( Id ` c ) = ( Id ` C ) ) |
26 |
25 4
|
eqtr4di |
|- ( ( c = C /\ h = H ) -> ( Id ` c ) = .1. ) |
27 |
26
|
fveq1d |
|- ( ( c = C /\ h = H ) -> ( ( Id ` c ) ` x ) = ( .1. ` x ) ) |
28 |
24 27
|
eqeq12d |
|- ( ( c = C /\ h = H ) -> ( ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) <-> ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) ) |
29 |
19 28
|
anbi12d |
|- ( ( c = C /\ h = H ) -> ( ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) <-> ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) ) ) |
30 |
11 13 29
|
sbcied2 |
|- ( c = C -> ( [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) <-> ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) ) ) |
31 |
30
|
opabbidv |
|- ( c = C -> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } = { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) |
32 |
10 10 31
|
mpoeq123dv |
|- ( c = C -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |
33 |
|
df-sect |
|- Sect = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) ) |
34 |
1
|
fvexi |
|- B e. _V |
35 |
34 34
|
mpoex |
|- ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) e. _V |
36 |
32 33 35
|
fvmpt |
|- ( C e. Cat -> ( Sect ` C ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |
37 |
6 36
|
syl |
|- ( ph -> ( Sect ` C ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |
38 |
5 37
|
eqtrid |
|- ( ph -> S = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |