| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							issect.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							issect.h | 
							 |-  H = ( Hom ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							issect.o | 
							 |-  .x. = ( comp ` C )  | 
						
						
							| 4 | 
							
								
							 | 
							issect.i | 
							 |-  .1. = ( Id ` C )  | 
						
						
							| 5 | 
							
								
							 | 
							issect.s | 
							 |-  S = ( Sect ` C )  | 
						
						
							| 6 | 
							
								
							 | 
							issect.c | 
							 |-  ( ph -> C e. Cat )  | 
						
						
							| 7 | 
							
								
							 | 
							issect.x | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 8 | 
							
								
							 | 
							issect.y | 
							 |-  ( ph -> Y e. B )  | 
						
						
							| 9 | 
							
								
							 | 
							fveq2 | 
							 |-  ( c = C -> ( Base ` c ) = ( Base ` C ) )  | 
						
						
							| 10 | 
							
								9 1
							 | 
							eqtr4di | 
							 |-  ( c = C -> ( Base ` c ) = B )  | 
						
						
							| 11 | 
							
								
							 | 
							fvexd | 
							 |-  ( c = C -> ( Hom ` c ) e. _V )  | 
						
						
							| 12 | 
							
								
							 | 
							fveq2 | 
							 |-  ( c = C -> ( Hom ` c ) = ( Hom ` C ) )  | 
						
						
							| 13 | 
							
								12 2
							 | 
							eqtr4di | 
							 |-  ( c = C -> ( Hom ` c ) = H )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr | 
							 |-  ( ( c = C /\ h = H ) -> h = H )  | 
						
						
							| 15 | 
							
								14
							 | 
							oveqd | 
							 |-  ( ( c = C /\ h = H ) -> ( x h y ) = ( x H y ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							eleq2d | 
							 |-  ( ( c = C /\ h = H ) -> ( f e. ( x h y ) <-> f e. ( x H y ) ) )  | 
						
						
							| 17 | 
							
								14
							 | 
							oveqd | 
							 |-  ( ( c = C /\ h = H ) -> ( y h x ) = ( y H x ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							eleq2d | 
							 |-  ( ( c = C /\ h = H ) -> ( g e. ( y h x ) <-> g e. ( y H x ) ) )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							anbi12d | 
							 |-  ( ( c = C /\ h = H ) -> ( ( f e. ( x h y ) /\ g e. ( y h x ) ) <-> ( f e. ( x H y ) /\ g e. ( y H x ) ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simpl | 
							 |-  ( ( c = C /\ h = H ) -> c = C )  | 
						
						
							| 21 | 
							
								20
							 | 
							fveq2d | 
							 |-  ( ( c = C /\ h = H ) -> ( comp ` c ) = ( comp ` C ) )  | 
						
						
							| 22 | 
							
								21 3
							 | 
							eqtr4di | 
							 |-  ( ( c = C /\ h = H ) -> ( comp ` c ) = .x. )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveqd | 
							 |-  ( ( c = C /\ h = H ) -> ( <. x , y >. ( comp ` c ) x ) = ( <. x , y >. .x. x ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							oveqd | 
							 |-  ( ( c = C /\ h = H ) -> ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( g ( <. x , y >. .x. x ) f ) )  | 
						
						
							| 25 | 
							
								20
							 | 
							fveq2d | 
							 |-  ( ( c = C /\ h = H ) -> ( Id ` c ) = ( Id ` C ) )  | 
						
						
							| 26 | 
							
								25 4
							 | 
							eqtr4di | 
							 |-  ( ( c = C /\ h = H ) -> ( Id ` c ) = .1. )  | 
						
						
							| 27 | 
							
								26
							 | 
							fveq1d | 
							 |-  ( ( c = C /\ h = H ) -> ( ( Id ` c ) ` x ) = ( .1. ` x ) )  | 
						
						
							| 28 | 
							
								24 27
							 | 
							eqeq12d | 
							 |-  ( ( c = C /\ h = H ) -> ( ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) <-> ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) )  | 
						
						
							| 29 | 
							
								19 28
							 | 
							anbi12d | 
							 |-  ( ( c = C /\ h = H ) -> ( ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) <-> ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) ) )  | 
						
						
							| 30 | 
							
								11 13 29
							 | 
							sbcied2 | 
							 |-  ( c = C -> ( [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) <-> ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							opabbidv | 
							 |-  ( c = C -> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } = { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) | 
						
						
							| 32 | 
							
								10 10 31
							 | 
							mpoeq123dv | 
							 |-  ( c = C -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) | 
						
						
							| 33 | 
							
								
							 | 
							df-sect | 
							 |-  Sect = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) ) | 
						
						
							| 34 | 
							
								1
							 | 
							fvexi | 
							 |-  B e. _V  | 
						
						
							| 35 | 
							
								34 34
							 | 
							mpoex | 
							 |-  ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) e. _V | 
						
						
							| 36 | 
							
								32 33 35
							 | 
							fvmpt | 
							 |-  ( C e. Cat -> ( Sect ` C ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) | 
						
						
							| 37 | 
							
								6 36
							 | 
							syl | 
							 |-  ( ph -> ( Sect ` C ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) | 
						
						
							| 38 | 
							
								5 37
							 | 
							eqtrid | 
							 |-  ( ph -> S = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |