Step |
Hyp |
Ref |
Expression |
1 |
|
issect.b |
|- B = ( Base ` C ) |
2 |
|
issect.h |
|- H = ( Hom ` C ) |
3 |
|
issect.o |
|- .x. = ( comp ` C ) |
4 |
|
issect.i |
|- .1. = ( Id ` C ) |
5 |
|
issect.s |
|- S = ( Sect ` C ) |
6 |
|
issect.c |
|- ( ph -> C e. Cat ) |
7 |
|
issect.x |
|- ( ph -> X e. B ) |
8 |
|
issect.y |
|- ( ph -> Y e. B ) |
9 |
1 2 3 4 5 6 7 7
|
sectffval |
|- ( ph -> S = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |
10 |
|
simprl |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X ) |
11 |
|
simprr |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y ) |
12 |
10 11
|
oveq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x H y ) = ( X H Y ) ) |
13 |
12
|
eleq2d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( f e. ( x H y ) <-> f e. ( X H Y ) ) ) |
14 |
11 10
|
oveq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( y H x ) = ( Y H X ) ) |
15 |
14
|
eleq2d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( g e. ( y H x ) <-> g e. ( Y H X ) ) ) |
16 |
13 15
|
anbi12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( f e. ( x H y ) /\ g e. ( y H x ) ) <-> ( f e. ( X H Y ) /\ g e. ( Y H X ) ) ) ) |
17 |
10 11
|
opeq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> <. x , y >. = <. X , Y >. ) |
18 |
17 10
|
oveq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( <. x , y >. .x. x ) = ( <. X , Y >. .x. X ) ) |
19 |
18
|
oveqd |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( g ( <. x , y >. .x. x ) f ) = ( g ( <. X , Y >. .x. X ) f ) ) |
20 |
10
|
fveq2d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( .1. ` x ) = ( .1. ` X ) ) |
21 |
19 20
|
eqeq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) <-> ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) ) |
22 |
16 21
|
anbi12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) <-> ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) ) ) |
23 |
22
|
opabbidv |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } = { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } ) |
24 |
|
ovex |
|- ( X H Y ) e. _V |
25 |
|
ovex |
|- ( Y H X ) e. _V |
26 |
24 25
|
xpex |
|- ( ( X H Y ) X. ( Y H X ) ) e. _V |
27 |
|
opabssxp |
|- { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } C_ ( ( X H Y ) X. ( Y H X ) ) |
28 |
26 27
|
ssexi |
|- { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } e. _V |
29 |
28
|
a1i |
|- ( ph -> { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } e. _V ) |
30 |
9 23 7 8 29
|
ovmpod |
|- ( ph -> ( X S Y ) = { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } ) |