Step |
Hyp |
Ref |
Expression |
1 |
|
invid.b |
|- B = ( Base ` C ) |
2 |
|
invid.i |
|- I = ( Id ` C ) |
3 |
|
invid.c |
|- ( ph -> C e. Cat ) |
4 |
|
invid.x |
|- ( ph -> X e. B ) |
5 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
6 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
7 |
1 5 2 3 4
|
catidcl |
|- ( ph -> ( I ` X ) e. ( X ( Hom ` C ) X ) ) |
8 |
1 5 2 3 4 6 4 7
|
catlid |
|- ( ph -> ( ( I ` X ) ( <. X , X >. ( comp ` C ) X ) ( I ` X ) ) = ( I ` X ) ) |
9 |
|
eqid |
|- ( Sect ` C ) = ( Sect ` C ) |
10 |
1 5 6 2 9 3 4 4 7 7
|
issect2 |
|- ( ph -> ( ( I ` X ) ( X ( Sect ` C ) X ) ( I ` X ) <-> ( ( I ` X ) ( <. X , X >. ( comp ` C ) X ) ( I ` X ) ) = ( I ` X ) ) ) |
11 |
8 10
|
mpbird |
|- ( ph -> ( I ` X ) ( X ( Sect ` C ) X ) ( I ` X ) ) |