Description: The section relation is a relation between morphisms from X to Y and morphisms from Y to X . (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | issect.b | |- B = ( Base ` C ) |
|
issect.h | |- H = ( Hom ` C ) |
||
issect.o | |- .x. = ( comp ` C ) |
||
issect.i | |- .1. = ( Id ` C ) |
||
issect.s | |- S = ( Sect ` C ) |
||
issect.c | |- ( ph -> C e. Cat ) |
||
issect.x | |- ( ph -> X e. B ) |
||
issect.y | |- ( ph -> Y e. B ) |
||
Assertion | sectss | |- ( ph -> ( X S Y ) C_ ( ( X H Y ) X. ( Y H X ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issect.b | |- B = ( Base ` C ) |
|
2 | issect.h | |- H = ( Hom ` C ) |
|
3 | issect.o | |- .x. = ( comp ` C ) |
|
4 | issect.i | |- .1. = ( Id ` C ) |
|
5 | issect.s | |- S = ( Sect ` C ) |
|
6 | issect.c | |- ( ph -> C e. Cat ) |
|
7 | issect.x | |- ( ph -> X e. B ) |
|
8 | issect.y | |- ( ph -> Y e. B ) |
|
9 | 1 2 3 4 5 6 7 8 | sectfval | |- ( ph -> ( X S Y ) = { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } ) |
10 | opabssxp | |- { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } C_ ( ( X H Y ) X. ( Y H X ) ) |
|
11 | 9 10 | eqsstrdi | |- ( ph -> ( X S Y ) C_ ( ( X H Y ) X. ( Y H X ) ) ) |