Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | seeq1 | |- ( R = S -> ( R Se A <-> S Se A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 | |- ( R = S -> S C_ R ) |
|
2 | sess1 | |- ( S C_ R -> ( R Se A -> S Se A ) ) |
|
3 | 1 2 | syl | |- ( R = S -> ( R Se A -> S Se A ) ) |
4 | eqimss | |- ( R = S -> R C_ S ) |
|
5 | sess1 | |- ( R C_ S -> ( S Se A -> R Se A ) ) |
|
6 | 4 5 | syl | |- ( R = S -> ( S Se A -> R Se A ) ) |
7 | 3 6 | impbid | |- ( R = S -> ( R Se A <-> S Se A ) ) |