Metamath Proof Explorer


Theorem seeq12d

Description: Equality deduction for the set-like predicate. (Contributed by Matthew House, 10-Sep-2025)

Ref Expression
Hypotheses seeq12d.1
|- ( ph -> R = S )
seeq12d.2
|- ( ph -> A = B )
Assertion seeq12d
|- ( ph -> ( R Se A <-> S Se B ) )

Proof

Step Hyp Ref Expression
1 seeq12d.1
 |-  ( ph -> R = S )
2 seeq12d.2
 |-  ( ph -> A = B )
3 seeq1
 |-  ( R = S -> ( R Se A <-> S Se A ) )
4 seeq2
 |-  ( A = B -> ( S Se A <-> S Se B ) )
5 3 4 sylan9bb
 |-  ( ( R = S /\ A = B ) -> ( R Se A <-> S Se B ) )
6 1 2 5 syl2anc
 |-  ( ph -> ( R Se A <-> S Se B ) )