Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seeq2 | |- ( A = B -> ( R Se A <-> R Se B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 | |- ( A = B -> B C_ A ) |
|
| 2 | sess2 | |- ( B C_ A -> ( R Se A -> R Se B ) ) |
|
| 3 | 1 2 | syl | |- ( A = B -> ( R Se A -> R Se B ) ) |
| 4 | eqimss | |- ( A = B -> A C_ B ) |
|
| 5 | sess2 | |- ( A C_ B -> ( R Se B -> R Se A ) ) |
|
| 6 | 4 5 | syl | |- ( A = B -> ( R Se B -> R Se A ) ) |
| 7 | 3 6 | impbid | |- ( A = B -> ( R Se A <-> R Se B ) ) |