| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( n = d -> ( Lam ` n ) = ( Lam ` d ) ) | 
						
							| 2 |  | oveq2 |  |-  ( n = d -> ( x / n ) = ( x / d ) ) | 
						
							| 3 | 2 | fveq2d |  |-  ( n = d -> ( psi ` ( x / n ) ) = ( psi ` ( x / d ) ) ) | 
						
							| 4 | 1 3 | oveq12d |  |-  ( n = d -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) = ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) | 
						
							| 5 | 4 | cbvsumv |  |-  sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) | 
						
							| 6 |  | fzfid |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / d ) ) ) e. Fin ) | 
						
							| 7 |  | elfznn |  |-  ( d e. ( 1 ... ( |_ ` x ) ) -> d e. NN ) | 
						
							| 8 | 7 | adantl |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> d e. NN ) | 
						
							| 9 |  | vmacl |  |-  ( d e. NN -> ( Lam ` d ) e. RR ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` d ) e. RR ) | 
						
							| 11 | 10 | recnd |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` d ) e. CC ) | 
						
							| 12 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` ( x / d ) ) ) -> m e. NN ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> m e. NN ) | 
						
							| 14 |  | vmacl |  |-  ( m e. NN -> ( Lam ` m ) e. RR ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( Lam ` m ) e. RR ) | 
						
							| 16 | 15 | recnd |  |-  ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( Lam ` m ) e. CC ) | 
						
							| 17 | 6 11 16 | fsummulc2 |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) x. sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( Lam ` m ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( Lam ` d ) x. ( Lam ` m ) ) ) | 
						
							| 18 | 7 | nnrpd |  |-  ( d e. ( 1 ... ( |_ ` x ) ) -> d e. RR+ ) | 
						
							| 19 |  | rpdivcl |  |-  ( ( x e. RR+ /\ d e. RR+ ) -> ( x / d ) e. RR+ ) | 
						
							| 20 | 18 19 | sylan2 |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x / d ) e. RR+ ) | 
						
							| 21 | 20 | rpred |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x / d ) e. RR ) | 
						
							| 22 |  | chpval |  |-  ( ( x / d ) e. RR -> ( psi ` ( x / d ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( Lam ` m ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / d ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( Lam ` m ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) = ( ( Lam ` d ) x. sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( Lam ` m ) ) ) | 
						
							| 25 | 13 | nncnd |  |-  ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> m e. CC ) | 
						
							| 26 | 7 | ad2antlr |  |-  ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> d e. NN ) | 
						
							| 27 | 26 | nncnd |  |-  ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> d e. CC ) | 
						
							| 28 | 26 | nnne0d |  |-  ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> d =/= 0 ) | 
						
							| 29 | 25 27 28 | divcan3d |  |-  ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( d x. m ) / d ) = m ) | 
						
							| 30 | 29 | fveq2d |  |-  ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( Lam ` ( ( d x. m ) / d ) ) = ( Lam ` m ) ) | 
						
							| 31 | 30 | oveq2d |  |-  ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( Lam ` d ) x. ( Lam ` ( ( d x. m ) / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` m ) ) ) | 
						
							| 32 | 31 | sumeq2dv |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( Lam ` d ) x. ( Lam ` ( ( d x. m ) / d ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( Lam ` d ) x. ( Lam ` m ) ) ) | 
						
							| 33 | 17 24 32 | 3eqtr4d |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( Lam ` d ) x. ( Lam ` ( ( d x. m ) / d ) ) ) ) | 
						
							| 34 | 33 | sumeq2dv |  |-  ( x e. RR+ -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( Lam ` d ) x. ( Lam ` ( ( d x. m ) / d ) ) ) ) | 
						
							| 35 | 5 34 | eqtrid |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( Lam ` d ) x. ( Lam ` ( ( d x. m ) / d ) ) ) ) | 
						
							| 36 |  | fvoveq1 |  |-  ( n = ( d x. m ) -> ( Lam ` ( n / d ) ) = ( Lam ` ( ( d x. m ) / d ) ) ) | 
						
							| 37 | 36 | oveq2d |  |-  ( n = ( d x. m ) -> ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( ( d x. m ) / d ) ) ) ) | 
						
							| 38 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 39 |  | ssrab2 |  |-  { y e. NN | y || n } C_ NN | 
						
							| 40 |  | simprr |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> d e. { y e. NN | y || n } ) | 
						
							| 41 | 39 40 | sselid |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> d e. NN ) | 
						
							| 42 | 41 | anassrs |  |-  ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ d e. { y e. NN | y || n } ) -> d e. NN ) | 
						
							| 43 | 42 9 | syl |  |-  ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ d e. { y e. NN | y || n } ) -> ( Lam ` d ) e. RR ) | 
						
							| 44 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 45 | 44 | adantl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 46 |  | dvdsdivcl |  |-  ( ( n e. NN /\ d e. { y e. NN | y || n } ) -> ( n / d ) e. { y e. NN | y || n } ) | 
						
							| 47 | 45 46 | sylan |  |-  ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ d e. { y e. NN | y || n } ) -> ( n / d ) e. { y e. NN | y || n } ) | 
						
							| 48 | 39 47 | sselid |  |-  ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ d e. { y e. NN | y || n } ) -> ( n / d ) e. NN ) | 
						
							| 49 |  | vmacl |  |-  ( ( n / d ) e. NN -> ( Lam ` ( n / d ) ) e. RR ) | 
						
							| 50 | 48 49 | syl |  |-  ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ d e. { y e. NN | y || n } ) -> ( Lam ` ( n / d ) ) e. RR ) | 
						
							| 51 | 43 50 | remulcld |  |-  ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ d e. { y e. NN | y || n } ) -> ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) e. RR ) | 
						
							| 52 | 51 | recnd |  |-  ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ d e. { y e. NN | y || n } ) -> ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) e. CC ) | 
						
							| 53 | 52 | anasss |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) e. CC ) | 
						
							| 54 | 37 38 53 | dvdsflsumcom |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( Lam ` d ) x. ( Lam ` ( ( d x. m ) / d ) ) ) ) | 
						
							| 55 | 35 54 | eqtr4d |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) ) | 
						
							| 56 | 55 | oveq1d |  |-  ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) ) ) | 
						
							| 57 |  | fzfid |  |-  ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 58 |  | vmacl |  |-  ( n e. NN -> ( Lam ` n ) e. RR ) | 
						
							| 59 | 45 58 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 60 | 59 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) | 
						
							| 61 | 44 | nnrpd |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) | 
						
							| 62 |  | rpdivcl |  |-  ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) | 
						
							| 63 | 61 62 | sylan2 |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 64 | 63 | rpred |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) | 
						
							| 65 |  | chpcl |  |-  ( ( x / n ) e. RR -> ( psi ` ( x / n ) ) e. RR ) | 
						
							| 66 | 64 65 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. RR ) | 
						
							| 67 | 66 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. CC ) | 
						
							| 68 | 60 67 | mulcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. CC ) | 
						
							| 69 | 45 | nnrpd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 70 |  | relogcl |  |-  ( n e. RR+ -> ( log ` n ) e. RR ) | 
						
							| 71 | 69 70 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) | 
						
							| 72 | 71 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. CC ) | 
						
							| 73 | 60 72 | mulcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( log ` n ) ) e. CC ) | 
						
							| 74 | 57 68 73 | fsumadd |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) ) ) | 
						
							| 75 |  | fzfid |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... n ) e. Fin ) | 
						
							| 76 |  | dvdsssfz1 |  |-  ( n e. NN -> { y e. NN | y || n } C_ ( 1 ... n ) ) | 
						
							| 77 | 45 76 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> { y e. NN | y || n } C_ ( 1 ... n ) ) | 
						
							| 78 | 75 77 | ssfid |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> { y e. NN | y || n } e. Fin ) | 
						
							| 79 | 78 51 | fsumrecl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) e. RR ) | 
						
							| 80 | 79 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) e. CC ) | 
						
							| 81 | 57 80 73 | fsumadd |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) ) ) | 
						
							| 82 | 56 74 81 | 3eqtr4d |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) ) | 
						
							| 83 | 72 67 | addcomd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` n ) + ( psi ` ( x / n ) ) ) = ( ( psi ` ( x / n ) ) + ( log ` n ) ) ) | 
						
							| 84 | 83 | oveq2d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) = ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) + ( log ` n ) ) ) ) | 
						
							| 85 | 60 67 72 | adddid |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) + ( log ` n ) ) ) = ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) ) | 
						
							| 86 | 84 85 | eqtrd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) = ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) ) | 
						
							| 87 | 86 | sumeq2dv |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) ) | 
						
							| 88 |  | logsqvma2 |  |-  ( n e. NN -> sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = ( sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) ) | 
						
							| 89 | 45 88 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = ( sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) ) | 
						
							| 90 | 89 | sumeq2dv |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( sum_ d e. { y e. NN | y || n } ( ( Lam ` d ) x. ( Lam ` ( n / d ) ) ) + ( ( Lam ` n ) x. ( log ` n ) ) ) ) | 
						
							| 91 | 82 87 90 | 3eqtr4d |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) ) | 
						
							| 92 |  | fvoveq1 |  |-  ( n = ( d x. m ) -> ( log ` ( n / d ) ) = ( log ` ( ( d x. m ) / d ) ) ) | 
						
							| 93 | 92 | oveq1d |  |-  ( n = ( d x. m ) -> ( ( log ` ( n / d ) ) ^ 2 ) = ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) | 
						
							| 94 | 93 | oveq2d |  |-  ( n = ( d x. m ) -> ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) ) | 
						
							| 95 |  | mucl |  |-  ( d e. NN -> ( mmu ` d ) e. ZZ ) | 
						
							| 96 | 41 95 | syl |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( mmu ` d ) e. ZZ ) | 
						
							| 97 | 96 | zcnd |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( mmu ` d ) e. CC ) | 
						
							| 98 | 61 | ad2antrl |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> n e. RR+ ) | 
						
							| 99 | 41 | nnrpd |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> d e. RR+ ) | 
						
							| 100 | 98 99 | rpdivcld |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( n / d ) e. RR+ ) | 
						
							| 101 |  | relogcl |  |-  ( ( n / d ) e. RR+ -> ( log ` ( n / d ) ) e. RR ) | 
						
							| 102 | 101 | recnd |  |-  ( ( n / d ) e. RR+ -> ( log ` ( n / d ) ) e. CC ) | 
						
							| 103 | 100 102 | syl |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( log ` ( n / d ) ) e. CC ) | 
						
							| 104 | 103 | sqcld |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( ( log ` ( n / d ) ) ^ 2 ) e. CC ) | 
						
							| 105 | 97 104 | mulcld |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) e. CC ) | 
						
							| 106 | 94 38 105 | dvdsflsumcom |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) ) | 
						
							| 107 | 29 | fveq2d |  |-  ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( log ` ( ( d x. m ) / d ) ) = ( log ` m ) ) | 
						
							| 108 | 107 | oveq1d |  |-  ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) = ( ( log ` m ) ^ 2 ) ) | 
						
							| 109 | 108 | oveq2d |  |-  ( ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) ) | 
						
							| 110 | 109 | sumeq2dv |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) ) | 
						
							| 111 | 110 | sumeq2dv |  |-  ( x e. RR+ -> sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) ) | 
						
							| 112 | 91 106 111 | 3eqtrd |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) ) | 
						
							| 113 | 112 | oveq1d |  |-  ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) = ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) ) | 
						
							| 114 | 113 | oveq1d |  |-  ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) = ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 115 | 114 | mpteq2ia |  |-  ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 116 |  | eqid |  |-  ( ( ( ( log ` ( x / d ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / d ) ) ) ) ) / d ) = ( ( ( ( log ` ( x / d ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / d ) ) ) ) ) / d ) | 
						
							| 117 | 116 | selberglem2 |  |-  ( x e. RR+ |-> ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) | 
						
							| 118 | 115 117 | eqeltri |  |-  ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |