Step |
Hyp |
Ref |
Expression |
1 |
|
reex |
|- RR e. _V |
2 |
|
rpssre |
|- RR+ C_ RR |
3 |
1 2
|
ssexi |
|- RR+ e. _V |
4 |
3
|
a1i |
|- ( T. -> RR+ e. _V ) |
5 |
|
ovexd |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) e. _V ) |
6 |
|
ovexd |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) e. _V ) |
7 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) |
8 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) ) |
9 |
4 5 6 7 8
|
offval2 |
|- ( T. -> ( ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) oF - ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) ) = ( x e. RR+ |-> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) ) ) |
10 |
9
|
mptru |
|- ( ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) oF - ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) ) = ( x e. RR+ |-> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) ) |
11 |
|
fzfid |
|- ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
12 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
13 |
12
|
adantl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
14 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
15 |
13 14
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
16 |
15
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) |
17 |
13
|
nnrpd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
18 |
|
relogcl |
|- ( n e. RR+ -> ( log ` n ) e. RR ) |
19 |
17 18
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) |
20 |
19
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. CC ) |
21 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
22 |
|
nndivre |
|- ( ( x e. RR /\ n e. NN ) -> ( x / n ) e. RR ) |
23 |
21 12 22
|
syl2an |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) |
24 |
|
chpcl |
|- ( ( x / n ) e. RR -> ( psi ` ( x / n ) ) e. RR ) |
25 |
23 24
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. RR ) |
26 |
25
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. CC ) |
27 |
20 26
|
addcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` n ) + ( psi ` ( x / n ) ) ) e. CC ) |
28 |
16 27
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) e. CC ) |
29 |
11 28
|
fsumcl |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) e. CC ) |
30 |
|
rpcn |
|- ( x e. RR+ -> x e. CC ) |
31 |
|
rpne0 |
|- ( x e. RR+ -> x =/= 0 ) |
32 |
29 30 31
|
divcld |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) e. CC ) |
33 |
|
2cn |
|- 2 e. CC |
34 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
35 |
34
|
recnd |
|- ( x e. RR+ -> ( log ` x ) e. CC ) |
36 |
|
mulcl |
|- ( ( 2 e. CC /\ ( log ` x ) e. CC ) -> ( 2 x. ( log ` x ) ) e. CC ) |
37 |
33 35 36
|
sylancr |
|- ( x e. RR+ -> ( 2 x. ( log ` x ) ) e. CC ) |
38 |
16 20
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( log ` n ) ) e. CC ) |
39 |
11 38
|
fsumcl |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) e. CC ) |
40 |
|
chpcl |
|- ( x e. RR -> ( psi ` x ) e. RR ) |
41 |
21 40
|
syl |
|- ( x e. RR+ -> ( psi ` x ) e. RR ) |
42 |
41
|
recnd |
|- ( x e. RR+ -> ( psi ` x ) e. CC ) |
43 |
42 35
|
mulcld |
|- ( x e. RR+ -> ( ( psi ` x ) x. ( log ` x ) ) e. CC ) |
44 |
39 43
|
subcld |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) e. CC ) |
45 |
44 30 31
|
divcld |
|- ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) e. CC ) |
46 |
32 37 45
|
sub32d |
|- ( x e. RR+ -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) = ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) ) |
47 |
|
rpcnne0 |
|- ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) |
48 |
|
divsubdir |
|- ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) e. CC /\ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) ) / x ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) ) |
49 |
29 44 47 48
|
syl3anc |
|- ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) ) / x ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) ) |
50 |
16 20 26
|
adddid |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) = ( ( ( Lam ` n ) x. ( log ` n ) ) + ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) |
51 |
50
|
sumeq2dv |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) |
52 |
16 26
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. CC ) |
53 |
11 38 52
|
fsumadd |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) |
54 |
51 53
|
eqtrd |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) |
55 |
54
|
oveq1d |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) ) ) |
56 |
11 52
|
fsumcl |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. CC ) |
57 |
39 56 43
|
pnncand |
|- ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) ) |
58 |
56 43
|
addcomd |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) |
59 |
55 57 58
|
3eqtrd |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) |
60 |
59
|
oveq1d |
|- ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) ) / x ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) |
61 |
49 60
|
eqtr3d |
|- ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) |
62 |
61
|
oveq1d |
|- ( x e. RR+ -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
63 |
46 62
|
eqtrd |
|- ( x e. RR+ -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
64 |
63
|
mpteq2ia |
|- ( x e. RR+ |-> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) ) = ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
65 |
10 64
|
eqtri |
|- ( ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) oF - ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) ) = ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
66 |
|
selberg |
|- ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |
67 |
|
selberg2lem |
|- ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) e. O(1) |
68 |
|
o1sub |
|- ( ( ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) /\ ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) e. O(1) ) -> ( ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) oF - ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) ) e. O(1) ) |
69 |
66 67 68
|
mp2an |
|- ( ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) oF - ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) ) e. O(1) |
70 |
65 69
|
eqeltrri |
|- ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |