Step |
Hyp |
Ref |
Expression |
1 |
|
selberg3lem1.1 |
|- ( ph -> A e. RR+ ) |
2 |
|
selberg3lem1.2 |
|- ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) - ( ( psi ` y ) x. ( log ` y ) ) ) / y ) ) <_ A ) |
3 |
|
1red |
|- ( ph -> 1 e. RR ) |
4 |
|
ioossre |
|- ( 1 (,) +oo ) C_ RR |
5 |
1
|
rpcnd |
|- ( ph -> A e. CC ) |
6 |
|
o1const |
|- ( ( ( 1 (,) +oo ) C_ RR /\ A e. CC ) -> ( x e. ( 1 (,) +oo ) |-> A ) e. O(1) ) |
7 |
4 5 6
|
sylancr |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> A ) e. O(1) ) |
8 |
|
fzfid |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
9 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
10 |
9
|
adantl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
11 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
12 |
10 11
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
13 |
12 10
|
nndivred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) |
14 |
8 13
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. RR ) |
15 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
16 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
17 |
16
|
simpld |
|- ( x e. ( 1 (,) +oo ) -> 1 < x ) |
18 |
15 17
|
rplogcld |
|- ( x e. ( 1 (,) +oo ) -> ( log ` x ) e. RR+ ) |
19 |
|
rpdivcl |
|- ( ( A e. RR+ /\ ( log ` x ) e. RR+ ) -> ( A / ( log ` x ) ) e. RR+ ) |
20 |
1 18 19
|
syl2an |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A / ( log ` x ) ) e. RR+ ) |
21 |
20
|
rpred |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A / ( log ` x ) ) e. RR ) |
22 |
14 21
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) e. RR ) |
23 |
22
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) e. CC ) |
24 |
5
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. CC ) |
25 |
14
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. CC ) |
26 |
18
|
adantl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) |
27 |
26
|
rpcnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) |
28 |
20
|
rpcnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A / ( log ` x ) ) e. CC ) |
29 |
25 27 28
|
subdird |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( A / ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) - ( ( log ` x ) x. ( A / ( log ` x ) ) ) ) ) |
30 |
26
|
rpne0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) |
31 |
24 27 30
|
divcan2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) x. ( A / ( log ` x ) ) ) = A ) |
32 |
31
|
oveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) - ( ( log ` x ) x. ( A / ( log ` x ) ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) - A ) ) |
33 |
29 32
|
eqtrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( A / ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) - A ) ) |
34 |
33
|
mpteq2dva |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( A / ( log ` x ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) - A ) ) ) |
35 |
26
|
rpred |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) |
36 |
14 35
|
resubcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) e. RR ) |
37 |
15
|
adantl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) |
38 |
|
0red |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 e. RR ) |
39 |
|
1red |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
40 |
|
0lt1 |
|- 0 < 1 |
41 |
40
|
a1i |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 < 1 ) |
42 |
17
|
adantl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) |
43 |
38 39 37 41 42
|
lttrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 < x ) |
44 |
37 43
|
elrpd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) |
45 |
44
|
ex |
|- ( ph -> ( x e. ( 1 (,) +oo ) -> x e. RR+ ) ) |
46 |
45
|
ssrdv |
|- ( ph -> ( 1 (,) +oo ) C_ RR+ ) |
47 |
|
vmadivsum |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) |
48 |
47
|
a1i |
|- ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) ) |
49 |
46 48
|
o1res2 |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) ) |
50 |
4
|
a1i |
|- ( ph -> ( 1 (,) +oo ) C_ RR ) |
51 |
|
ere |
|- _e e. RR |
52 |
51
|
a1i |
|- ( ph -> _e e. RR ) |
53 |
1
|
rpred |
|- ( ph -> A e. RR ) |
54 |
20
|
adantrr |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( A / ( log ` x ) ) e. RR+ ) |
55 |
54
|
rprege0d |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( ( A / ( log ` x ) ) e. RR /\ 0 <_ ( A / ( log ` x ) ) ) ) |
56 |
|
absid |
|- ( ( ( A / ( log ` x ) ) e. RR /\ 0 <_ ( A / ( log ` x ) ) ) -> ( abs ` ( A / ( log ` x ) ) ) = ( A / ( log ` x ) ) ) |
57 |
55 56
|
syl |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( abs ` ( A / ( log ` x ) ) ) = ( A / ( log ` x ) ) ) |
58 |
|
loge |
|- ( log ` _e ) = 1 |
59 |
|
simprr |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> _e <_ x ) |
60 |
|
epr |
|- _e e. RR+ |
61 |
44
|
adantrr |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> x e. RR+ ) |
62 |
|
logleb |
|- ( ( _e e. RR+ /\ x e. RR+ ) -> ( _e <_ x <-> ( log ` _e ) <_ ( log ` x ) ) ) |
63 |
60 61 62
|
sylancr |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( _e <_ x <-> ( log ` _e ) <_ ( log ` x ) ) ) |
64 |
59 63
|
mpbid |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( log ` _e ) <_ ( log ` x ) ) |
65 |
58 64
|
eqbrtrrid |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> 1 <_ ( log ` x ) ) |
66 |
|
1rp |
|- 1 e. RR+ |
67 |
|
rpregt0 |
|- ( 1 e. RR+ -> ( 1 e. RR /\ 0 < 1 ) ) |
68 |
66 67
|
mp1i |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( 1 e. RR /\ 0 < 1 ) ) |
69 |
26
|
adantrr |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( log ` x ) e. RR+ ) |
70 |
69
|
rpregt0d |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( ( log ` x ) e. RR /\ 0 < ( log ` x ) ) ) |
71 |
1
|
adantr |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> A e. RR+ ) |
72 |
71
|
rpregt0d |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( A e. RR /\ 0 < A ) ) |
73 |
|
lediv2 |
|- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( ( log ` x ) e. RR /\ 0 < ( log ` x ) ) /\ ( A e. RR /\ 0 < A ) ) -> ( 1 <_ ( log ` x ) <-> ( A / ( log ` x ) ) <_ ( A / 1 ) ) ) |
74 |
68 70 72 73
|
syl3anc |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( 1 <_ ( log ` x ) <-> ( A / ( log ` x ) ) <_ ( A / 1 ) ) ) |
75 |
65 74
|
mpbid |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( A / ( log ` x ) ) <_ ( A / 1 ) ) |
76 |
5
|
adantr |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> A e. CC ) |
77 |
76
|
div1d |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( A / 1 ) = A ) |
78 |
75 77
|
breqtrd |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( A / ( log ` x ) ) <_ A ) |
79 |
57 78
|
eqbrtrd |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( abs ` ( A / ( log ` x ) ) ) <_ A ) |
80 |
50 28 52 53 79
|
elo1d |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( A / ( log ` x ) ) ) e. O(1) ) |
81 |
36 21 49 80
|
o1mul2 |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( A / ( log ` x ) ) ) ) e. O(1) ) |
82 |
34 81
|
eqeltrrd |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) - A ) ) e. O(1) ) |
83 |
23 24 82
|
o1dif |
|- ( ph -> ( ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> A ) e. O(1) ) ) |
84 |
7 83
|
mpbird |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) e. O(1) ) |
85 |
|
2re |
|- 2 e. RR |
86 |
|
rerpdivcl |
|- ( ( 2 e. RR /\ ( log ` x ) e. RR+ ) -> ( 2 / ( log ` x ) ) e. RR ) |
87 |
85 26 86
|
sylancr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. RR ) |
88 |
|
nndivre |
|- ( ( x e. RR /\ n e. NN ) -> ( x / n ) e. RR ) |
89 |
37 9 88
|
syl2an |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) |
90 |
|
chpcl |
|- ( ( x / n ) e. RR -> ( psi ` ( x / n ) ) e. RR ) |
91 |
89 90
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. RR ) |
92 |
12 91
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. RR ) |
93 |
10
|
nnrpd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
94 |
93
|
relogcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) |
95 |
92 94
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) |
96 |
8 95
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) |
97 |
87 96
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) e. RR ) |
98 |
8 92
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. RR ) |
99 |
97 98
|
resubcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) e. RR ) |
100 |
99 44
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) e. RR ) |
101 |
100
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) e. CC ) |
102 |
101
|
abscld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) e. RR ) |
103 |
23
|
abscld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) e. RR ) |
104 |
|
2cnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) |
105 |
96
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) |
106 |
104 105
|
mulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) e. CC ) |
107 |
98
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. CC ) |
108 |
107 27
|
mulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) e. CC ) |
109 |
106 108
|
subcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) e. CC ) |
110 |
109
|
abscld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) e. RR ) |
111 |
43
|
gt0ne0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) |
112 |
110 37 111
|
redivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / x ) e. RR ) |
113 |
53
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. RR ) |
114 |
14 113
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) e. RR ) |
115 |
12
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) |
116 |
|
fzfid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) |
117 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) |
118 |
117
|
adantl |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) |
119 |
|
vmacl |
|- ( m e. NN -> ( Lam ` m ) e. RR ) |
120 |
118 119
|
syl |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` m ) e. RR ) |
121 |
118
|
nnrpd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. RR+ ) |
122 |
121
|
relogcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( log ` m ) e. RR ) |
123 |
120 122
|
remulcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. RR ) |
124 |
116 123
|
fsumrecl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) e. RR ) |
125 |
9
|
nnrpd |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) |
126 |
|
rpdivcl |
|- ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) |
127 |
44 125 126
|
syl2an |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
128 |
127
|
relogcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) |
129 |
91 128
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) e. RR ) |
130 |
124 129
|
resubcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) e. RR ) |
131 |
130
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) e. CC ) |
132 |
115 131
|
mulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) e. CC ) |
133 |
8 132
|
fsumcl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) e. CC ) |
134 |
133
|
abscld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) e. RR ) |
135 |
132
|
abscld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) e. RR ) |
136 |
8 135
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) e. RR ) |
137 |
113 37
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. x ) e. RR ) |
138 |
14 137
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A x. x ) ) e. RR ) |
139 |
8 132
|
fsumabs |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) ) |
140 |
53
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A e. RR ) |
141 |
37
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
142 |
140 141
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A x. x ) e. RR ) |
143 |
13 142
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( A x. x ) ) e. RR ) |
144 |
131
|
abscld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) e. RR ) |
145 |
142 10
|
nndivred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( A x. x ) / n ) e. RR ) |
146 |
|
vmage0 |
|- ( n e. NN -> 0 <_ ( Lam ` n ) ) |
147 |
10 146
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( Lam ` n ) ) |
148 |
89
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. CC ) |
149 |
127
|
rpne0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) =/= 0 ) |
150 |
131 148 149
|
absdivd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) / ( x / n ) ) ) = ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) / ( abs ` ( x / n ) ) ) ) |
151 |
127
|
rpge0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( x / n ) ) |
152 |
89 151
|
absidd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( x / n ) ) = ( x / n ) ) |
153 |
152
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) / ( abs ` ( x / n ) ) ) = ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) / ( x / n ) ) ) |
154 |
150 153
|
eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) / ( x / n ) ) ) = ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) / ( x / n ) ) ) |
155 |
|
fveq2 |
|- ( k = m -> ( Lam ` k ) = ( Lam ` m ) ) |
156 |
|
fveq2 |
|- ( k = m -> ( log ` k ) = ( log ` m ) ) |
157 |
155 156
|
oveq12d |
|- ( k = m -> ( ( Lam ` k ) x. ( log ` k ) ) = ( ( Lam ` m ) x. ( log ` m ) ) ) |
158 |
157
|
cbvsumv |
|- sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) = sum_ m e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` m ) x. ( log ` m ) ) |
159 |
|
fveq2 |
|- ( y = ( x / n ) -> ( |_ ` y ) = ( |_ ` ( x / n ) ) ) |
160 |
159
|
oveq2d |
|- ( y = ( x / n ) -> ( 1 ... ( |_ ` y ) ) = ( 1 ... ( |_ ` ( x / n ) ) ) ) |
161 |
160
|
sumeq1d |
|- ( y = ( x / n ) -> sum_ m e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` m ) x. ( log ` m ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) |
162 |
158 161
|
eqtrid |
|- ( y = ( x / n ) -> sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) |
163 |
|
fveq2 |
|- ( y = ( x / n ) -> ( psi ` y ) = ( psi ` ( x / n ) ) ) |
164 |
|
fveq2 |
|- ( y = ( x / n ) -> ( log ` y ) = ( log ` ( x / n ) ) ) |
165 |
163 164
|
oveq12d |
|- ( y = ( x / n ) -> ( ( psi ` y ) x. ( log ` y ) ) = ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) |
166 |
162 165
|
oveq12d |
|- ( y = ( x / n ) -> ( sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) - ( ( psi ` y ) x. ( log ` y ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) |
167 |
|
id |
|- ( y = ( x / n ) -> y = ( x / n ) ) |
168 |
166 167
|
oveq12d |
|- ( y = ( x / n ) -> ( ( sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) - ( ( psi ` y ) x. ( log ` y ) ) ) / y ) = ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) / ( x / n ) ) ) |
169 |
168
|
fveq2d |
|- ( y = ( x / n ) -> ( abs ` ( ( sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) - ( ( psi ` y ) x. ( log ` y ) ) ) / y ) ) = ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) / ( x / n ) ) ) ) |
170 |
169
|
breq1d |
|- ( y = ( x / n ) -> ( ( abs ` ( ( sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) - ( ( psi ` y ) x. ( log ` y ) ) ) / y ) ) <_ A <-> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) / ( x / n ) ) ) <_ A ) ) |
171 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) - ( ( psi ` y ) x. ( log ` y ) ) ) / y ) ) <_ A ) |
172 |
10
|
nncnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
173 |
172
|
mulid2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) = n ) |
174 |
|
fznnfl |
|- ( x e. RR -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) |
175 |
37 174
|
syl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) |
176 |
175
|
simplbda |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n <_ x ) |
177 |
173 176
|
eqbrtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) <_ x ) |
178 |
|
1red |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) |
179 |
178 141 93
|
lemuldivd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 x. n ) <_ x <-> 1 <_ ( x / n ) ) ) |
180 |
177 179
|
mpbid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ ( x / n ) ) |
181 |
|
1re |
|- 1 e. RR |
182 |
|
elicopnf |
|- ( 1 e. RR -> ( ( x / n ) e. ( 1 [,) +oo ) <-> ( ( x / n ) e. RR /\ 1 <_ ( x / n ) ) ) ) |
183 |
181 182
|
ax-mp |
|- ( ( x / n ) e. ( 1 [,) +oo ) <-> ( ( x / n ) e. RR /\ 1 <_ ( x / n ) ) ) |
184 |
89 180 183
|
sylanbrc |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. ( 1 [,) +oo ) ) |
185 |
170 171 184
|
rspcdva |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) / ( x / n ) ) ) <_ A ) |
186 |
154 185
|
eqbrtrrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) / ( x / n ) ) <_ A ) |
187 |
144 140 127
|
ledivmul2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) / ( x / n ) ) <_ A <-> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) <_ ( A x. ( x / n ) ) ) ) |
188 |
186 187
|
mpbid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) <_ ( A x. ( x / n ) ) ) |
189 |
24
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A e. CC ) |
190 |
141
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) |
191 |
10
|
nnne0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) |
192 |
189 190 172 191
|
divassd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( A x. x ) / n ) = ( A x. ( x / n ) ) ) |
193 |
188 192
|
breqtrrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) <_ ( ( A x. x ) / n ) ) |
194 |
144 145 12 147 193
|
lemul2ad |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) <_ ( ( Lam ` n ) x. ( ( A x. x ) / n ) ) ) |
195 |
115 131
|
absmuld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) = ( ( abs ` ( Lam ` n ) ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) ) |
196 |
12 147
|
absidd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( Lam ` n ) ) = ( Lam ` n ) ) |
197 |
196
|
oveq1d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( Lam ` n ) ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) = ( ( Lam ` n ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) ) |
198 |
195 197
|
eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) = ( ( Lam ` n ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) ) |
199 |
142
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A x. x ) e. CC ) |
200 |
115 172 199 191
|
div32d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( A x. x ) ) = ( ( Lam ` n ) x. ( ( A x. x ) / n ) ) ) |
201 |
194 198 200
|
3brtr4d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) <_ ( ( ( Lam ` n ) / n ) x. ( A x. x ) ) ) |
202 |
8 135 143 201
|
fsumle |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( A x. x ) ) ) |
203 |
37
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) |
204 |
24 203
|
mulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. x ) e. CC ) |
205 |
115 172 191
|
divcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) |
206 |
8 204 205
|
fsummulc1 |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A x. x ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( A x. x ) ) ) |
207 |
202 206
|
breqtrrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A x. x ) ) ) |
208 |
134 136 138 139 207
|
letrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A x. x ) ) ) |
209 |
124
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) |
210 |
91
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. CC ) |
211 |
94
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. CC ) |
212 |
210 211
|
mulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / n ) ) x. ( log ` n ) ) e. CC ) |
213 |
209 212
|
addcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) e. CC ) |
214 |
115 213
|
mulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) e. CC ) |
215 |
115 210
|
mulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. CC ) |
216 |
27
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` x ) e. CC ) |
217 |
215 216
|
mulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) e. CC ) |
218 |
8 214 217
|
fsumsub |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) |
219 |
210 216
|
mulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / n ) ) x. ( log ` x ) ) e. CC ) |
220 |
115 213 219
|
subdid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) - ( ( psi ` ( x / n ) ) x. ( log ` x ) ) ) ) = ( ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` x ) ) ) ) ) |
221 |
44
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) |
222 |
221 93
|
relogdivd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) = ( ( log ` x ) - ( log ` n ) ) ) |
223 |
222
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) = ( ( psi ` ( x / n ) ) x. ( ( log ` x ) - ( log ` n ) ) ) ) |
224 |
210 216 211
|
subdid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / n ) ) x. ( ( log ` x ) - ( log ` n ) ) ) = ( ( ( psi ` ( x / n ) ) x. ( log ` x ) ) - ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) |
225 |
223 224
|
eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) = ( ( ( psi ` ( x / n ) ) x. ( log ` x ) ) - ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) |
226 |
225
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( ( psi ` ( x / n ) ) x. ( log ` x ) ) - ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) ) |
227 |
209 219 212
|
subsub3d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( ( psi ` ( x / n ) ) x. ( log ` x ) ) - ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) = ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) - ( ( psi ` ( x / n ) ) x. ( log ` x ) ) ) ) |
228 |
226 227
|
eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) = ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) - ( ( psi ` ( x / n ) ) x. ( log ` x ) ) ) ) |
229 |
228
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) = ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) - ( ( psi ` ( x / n ) ) x. ( log ` x ) ) ) ) ) |
230 |
115 210 216
|
mulassd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) = ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` x ) ) ) ) |
231 |
230
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) = ( ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` x ) ) ) ) ) |
232 |
220 229 231
|
3eqtr4d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) = ( ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) |
233 |
232
|
sumeq2dv |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) |
234 |
|
fveq2 |
|- ( n = m -> ( Lam ` n ) = ( Lam ` m ) ) |
235 |
|
oveq2 |
|- ( n = m -> ( x / n ) = ( x / m ) ) |
236 |
235
|
fveq2d |
|- ( n = m -> ( psi ` ( x / n ) ) = ( psi ` ( x / m ) ) ) |
237 |
234 236
|
oveq12d |
|- ( n = m -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) = ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) |
238 |
|
fveq2 |
|- ( n = m -> ( log ` n ) = ( log ` m ) ) |
239 |
237 238
|
oveq12d |
|- ( n = m -> ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) = ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) |
240 |
239
|
cbvsumv |
|- sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) |
241 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` ( x / m ) ) ) -> n e. NN ) |
242 |
241
|
adantl |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) -> n e. NN ) |
243 |
242 11
|
syl |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) -> ( Lam ` n ) e. RR ) |
244 |
243
|
recnd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) -> ( Lam ` n ) e. CC ) |
245 |
244
|
anasss |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( Lam ` n ) e. CC ) |
246 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` x ) ) -> m e. NN ) |
247 |
246
|
adantl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. NN ) |
248 |
247 119
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` m ) e. RR ) |
249 |
248
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` m ) e. CC ) |
250 |
247
|
nnrpd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. RR+ ) |
251 |
250
|
relogcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` m ) e. RR ) |
252 |
251
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` m ) e. CC ) |
253 |
249 252
|
mulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) |
254 |
253
|
adantrr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) |
255 |
245 254
|
mulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) e. CC ) |
256 |
37 255
|
fsumfldivdiag |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
257 |
37
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
258 |
257 247
|
nndivred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( x / m ) e. RR ) |
259 |
|
chpcl |
|- ( ( x / m ) e. RR -> ( psi ` ( x / m ) ) e. RR ) |
260 |
258 259
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / m ) ) e. RR ) |
261 |
260
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / m ) ) e. CC ) |
262 |
249 261 252
|
mul32d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = ( ( ( Lam ` m ) x. ( log ` m ) ) x. ( psi ` ( x / m ) ) ) ) |
263 |
248 251
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. RR ) |
264 |
263
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) |
265 |
264 261
|
mulcomd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( log ` m ) ) x. ( psi ` ( x / m ) ) ) = ( ( psi ` ( x / m ) ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
266 |
|
chpval |
|- ( ( x / m ) e. RR -> ( psi ` ( x / m ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) ) |
267 |
258 266
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / m ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) ) |
268 |
267
|
oveq1d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / m ) ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
269 |
|
fzfid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / m ) ) ) e. Fin ) |
270 |
269 264 244
|
fsummulc1 |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
271 |
268 270
|
eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / m ) ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
272 |
262 265 271
|
3eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
273 |
272
|
sumeq2dv |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
274 |
123
|
recnd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) |
275 |
116 115 274
|
fsummulc2 |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
276 |
275
|
sumeq2dv |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
277 |
256 273 276
|
3eqtr4d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
278 |
240 277
|
eqtrid |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
279 |
115 210 211
|
mulassd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) = ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) |
280 |
279
|
sumeq2dv |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) |
281 |
278 280
|
oveq12d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) ) |
282 |
105
|
2timesd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) |
283 |
115 209
|
mulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) e. CC ) |
284 |
115 212
|
mulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) e. CC ) |
285 |
8 283 284
|
fsumadd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) ) |
286 |
281 282 285
|
3eqtr4d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) ) |
287 |
115 209 212
|
adddid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) = ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) ) |
288 |
287
|
sumeq2dv |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) ) |
289 |
286 288
|
eqtr4d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) ) |
290 |
92
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. CC ) |
291 |
8 27 290
|
fsummulc1 |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) |
292 |
289 291
|
oveq12d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) |
293 |
218 233 292
|
3eqtr4rd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) |
294 |
293
|
fveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) = ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) ) |
295 |
25 24 203
|
mulassd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) x. x ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A x. x ) ) ) |
296 |
208 294 295
|
3brtr4d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) x. x ) ) |
297 |
110 114 44
|
ledivmul2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / x ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) <-> ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) x. x ) ) ) |
298 |
296 297
|
mpbird |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / x ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) ) |
299 |
112 114 26 298
|
lediv1dd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / x ) / ( log ` x ) ) <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) / ( log ` x ) ) ) |
300 |
110
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) e. CC ) |
301 |
300 203 27 111 30
|
divdiv1d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / x ) / ( log ` x ) ) = ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) |
302 |
109 27 203 30 111
|
divdiv32d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( log ` x ) ) / x ) = ( ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / x ) / ( log ` x ) ) ) |
303 |
106 108 27 30
|
divsubdird |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( log ` x ) ) = ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) / ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) / ( log ` x ) ) ) ) |
304 |
104 105 27 30
|
div23d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) / ( log ` x ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) |
305 |
107 27 30
|
divcan4d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) / ( log ` x ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) |
306 |
304 305
|
oveq12d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) / ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) / ( log ` x ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) |
307 |
303 306
|
eqtrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( log ` x ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) |
308 |
307
|
oveq1d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( log ` x ) ) / x ) = ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) |
309 |
109 203 27 111 30
|
divdiv1d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / x ) / ( log ` x ) ) = ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( x x. ( log ` x ) ) ) ) |
310 |
302 308 309
|
3eqtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) = ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( x x. ( log ` x ) ) ) ) |
311 |
310
|
fveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) = ( abs ` ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( x x. ( log ` x ) ) ) ) ) |
312 |
44 26
|
rpmulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR+ ) |
313 |
312
|
rpcnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. CC ) |
314 |
312
|
rpne0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) =/= 0 ) |
315 |
109 313 314
|
absdivd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( x x. ( log ` x ) ) ) ) = ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / ( abs ` ( x x. ( log ` x ) ) ) ) ) |
316 |
312
|
rpred |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR ) |
317 |
312
|
rpge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( x x. ( log ` x ) ) ) |
318 |
316 317
|
absidd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( x x. ( log ` x ) ) ) = ( x x. ( log ` x ) ) ) |
319 |
318
|
oveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / ( abs ` ( x x. ( log ` x ) ) ) ) = ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) |
320 |
311 315 319
|
3eqtrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) = ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) |
321 |
301 320
|
eqtr4d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / x ) / ( log ` x ) ) = ( abs ` ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) ) |
322 |
25 24 27 30
|
divassd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) / ( log ` x ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) |
323 |
299 321 322
|
3brtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) |
324 |
22
|
leabsd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) <_ ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) ) |
325 |
102 22 103 323 324
|
letrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) <_ ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) ) |
326 |
325
|
adantrr |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( abs ` ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) <_ ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) ) |
327 |
3 84 22 101 326
|
o1le |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) e. O(1) ) |