Step |
Hyp |
Ref |
Expression |
1 |
|
pntrval.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
2 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
3 |
2
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) |
4 |
|
1rp |
|- 1 e. RR+ |
5 |
4
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
6 |
|
1red |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
7 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
8 |
7
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) |
9 |
8
|
simpld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) |
10 |
6 3 9
|
ltled |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) |
11 |
3 5 10
|
rpgecld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) |
12 |
11
|
relogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) |
13 |
12
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) |
14 |
13
|
2timesd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) = ( ( log ` x ) + ( log ` x ) ) ) |
15 |
14
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( ( log ` x ) + ( log ` x ) ) ) ) |
16 |
|
chpcl |
|- ( x e. RR -> ( psi ` x ) e. RR ) |
17 |
3 16
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( psi ` x ) e. RR ) |
18 |
17 12
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. RR ) |
19 |
|
2re |
|- 2 e. RR |
20 |
19
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) |
21 |
3 9
|
rplogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) |
22 |
20 21
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. RR ) |
23 |
|
fzfid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
24 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
25 |
24
|
adantl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
26 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
27 |
25 26
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
28 |
3
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
29 |
28 25
|
nndivred |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) |
30 |
|
chpcl |
|- ( ( x / n ) e. RR -> ( psi ` ( x / n ) ) e. RR ) |
31 |
29 30
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. RR ) |
32 |
27 31
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. RR ) |
33 |
25
|
nnrpd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
34 |
33
|
relogcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) |
35 |
32 34
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) |
36 |
23 35
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) |
37 |
22 36
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) e. RR ) |
38 |
18 37
|
readdcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) e. RR ) |
39 |
38 11
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) e. RR ) |
40 |
39
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) e. CC ) |
41 |
40 13 13
|
subsub4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( log ` x ) ) - ( log ` x ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( ( log ` x ) + ( log ` x ) ) ) ) |
42 |
15 41
|
eqtr4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( log ` x ) ) - ( log ` x ) ) ) |
43 |
42
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) - ( log ` x ) ) ) = ( ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( log ` x ) ) - ( log ` x ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) - ( log ` x ) ) ) ) |
44 |
40 13
|
subcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( log ` x ) ) e. CC ) |
45 |
|
2cn |
|- 2 e. CC |
46 |
45
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) |
47 |
21
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) |
48 |
46 13 47
|
divcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. CC ) |
49 |
27 25
|
nndivred |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) |
50 |
49 34
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) e. RR ) |
51 |
23 50
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) e. RR ) |
52 |
51
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) e. CC ) |
53 |
48 52
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) e. CC ) |
54 |
44 53 13
|
nnncan2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( log ` x ) ) - ( log ` x ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) - ( log ` x ) ) ) = ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) |
55 |
1
|
pntrf |
|- R : RR+ --> RR |
56 |
55
|
ffvelrni |
|- ( x e. RR+ -> ( R ` x ) e. RR ) |
57 |
11 56
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. RR ) |
58 |
57
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. CC ) |
59 |
58 13
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( R ` x ) x. ( log ` x ) ) e. CC ) |
60 |
37
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) e. CC ) |
61 |
59 60
|
addcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) e. CC ) |
62 |
3
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) |
63 |
62 53
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) e. CC ) |
64 |
11
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) |
65 |
61 63 62 64
|
divsubdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) - ( x x. ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) / x ) = ( ( ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( ( x x. ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) / x ) ) ) |
66 |
59 60 63
|
addsubassd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) - ( x x. ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) = ( ( ( R ` x ) x. ( log ` x ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( x x. ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) ) ) |
67 |
36
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) |
68 |
62 52
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) e. CC ) |
69 |
48 67 68
|
subdid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) - ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( ( 2 / ( log ` x ) ) x. ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) ) |
70 |
50
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) e. CC ) |
71 |
23 62 70
|
fsummulc2 |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( x x. ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) |
72 |
71
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) - ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( x x. ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) |
73 |
35
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) |
74 |
62
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) |
75 |
74 70
|
mulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) e. CC ) |
76 |
23 73 75
|
fsumsub |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) - ( x x. ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( x x. ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) |
77 |
72 76
|
eqtr4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) - ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) - ( x x. ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) |
78 |
27
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) |
79 |
31
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. CC ) |
80 |
34
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. CC ) |
81 |
78 79 80
|
mul32d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) = ( ( ( Lam ` n ) x. ( log ` n ) ) x. ( psi ` ( x / n ) ) ) ) |
82 |
25
|
nncnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
83 |
25
|
nnne0d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) |
84 |
78 80 82 83
|
div23d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( log ` n ) ) / n ) = ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) |
85 |
84
|
oveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( ( ( Lam ` n ) x. ( log ` n ) ) / n ) ) = ( x x. ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) |
86 |
78 80
|
mulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( log ` n ) ) e. CC ) |
87 |
74 86 82 83
|
div12d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( ( ( Lam ` n ) x. ( log ` n ) ) / n ) ) = ( ( ( Lam ` n ) x. ( log ` n ) ) x. ( x / n ) ) ) |
88 |
85 87
|
eqtr3d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) = ( ( ( Lam ` n ) x. ( log ` n ) ) x. ( x / n ) ) ) |
89 |
81 88
|
oveq12d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) - ( x x. ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) = ( ( ( ( Lam ` n ) x. ( log ` n ) ) x. ( psi ` ( x / n ) ) ) - ( ( ( Lam ` n ) x. ( log ` n ) ) x. ( x / n ) ) ) ) |
90 |
11
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) |
91 |
90 33
|
rpdivcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
92 |
1
|
pntrval |
|- ( ( x / n ) e. RR+ -> ( R ` ( x / n ) ) = ( ( psi ` ( x / n ) ) - ( x / n ) ) ) |
93 |
91 92
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) = ( ( psi ` ( x / n ) ) - ( x / n ) ) ) |
94 |
93
|
oveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( log ` n ) ) x. ( R ` ( x / n ) ) ) = ( ( ( Lam ` n ) x. ( log ` n ) ) x. ( ( psi ` ( x / n ) ) - ( x / n ) ) ) ) |
95 |
29
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. CC ) |
96 |
86 79 95
|
subdid |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( log ` n ) ) x. ( ( psi ` ( x / n ) ) - ( x / n ) ) ) = ( ( ( ( Lam ` n ) x. ( log ` n ) ) x. ( psi ` ( x / n ) ) ) - ( ( ( Lam ` n ) x. ( log ` n ) ) x. ( x / n ) ) ) ) |
97 |
94 96
|
eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( log ` n ) ) x. ( R ` ( x / n ) ) ) = ( ( ( ( Lam ` n ) x. ( log ` n ) ) x. ( psi ` ( x / n ) ) ) - ( ( ( Lam ` n ) x. ( log ` n ) ) x. ( x / n ) ) ) ) |
98 |
89 97
|
eqtr4d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) - ( x x. ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) = ( ( ( Lam ` n ) x. ( log ` n ) ) x. ( R ` ( x / n ) ) ) ) |
99 |
55
|
ffvelrni |
|- ( ( x / n ) e. RR+ -> ( R ` ( x / n ) ) e. RR ) |
100 |
91 99
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. RR ) |
101 |
100
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. CC ) |
102 |
78 101 80
|
mul32d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( R ` ( x / n ) ) ) x. ( log ` n ) ) = ( ( ( Lam ` n ) x. ( log ` n ) ) x. ( R ` ( x / n ) ) ) ) |
103 |
98 102
|
eqtr4d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) - ( x x. ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) = ( ( ( Lam ` n ) x. ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) |
104 |
103
|
sumeq2dv |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) - ( x x. ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) |
105 |
77 104
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) - ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) |
106 |
105
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) - ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) |
107 |
48 62 52
|
mul12d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) = ( x x. ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) |
108 |
107
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( ( 2 / ( log ` x ) ) x. ( x x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( x x. ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) ) |
109 |
69 106 108
|
3eqtr3rd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( x x. ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) |
110 |
109
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( R ` x ) x. ( log ` x ) ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( x x. ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) ) = ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) |
111 |
66 110
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) - ( x x. ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) = ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) |
112 |
111
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) - ( x x. ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) / x ) = ( ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) |
113 |
1
|
pntrval |
|- ( x e. RR+ -> ( R ` x ) = ( ( psi ` x ) - x ) ) |
114 |
11 113
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) = ( ( psi ` x ) - x ) ) |
115 |
114
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( R ` x ) x. ( log ` x ) ) = ( ( ( psi ` x ) - x ) x. ( log ` x ) ) ) |
116 |
17
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( psi ` x ) e. CC ) |
117 |
116 62 13
|
subdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) - x ) x. ( log ` x ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) ) |
118 |
115 117
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( R ` x ) x. ( log ` x ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) ) |
119 |
118
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) |
120 |
18
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. CC ) |
121 |
62 13
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. CC ) |
122 |
120 60 121
|
addsubd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) - ( x x. ( log ` x ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) |
123 |
119 122
|
eqtr4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) - ( x x. ( log ` x ) ) ) ) |
124 |
123
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) - ( x x. ( log ` x ) ) ) / x ) ) |
125 |
38
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) e. CC ) |
126 |
125 121 62 64
|
divsubdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) - ( x x. ( log ` x ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( ( x x. ( log ` x ) ) / x ) ) ) |
127 |
13 62 64
|
divcan3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x x. ( log ` x ) ) / x ) = ( log ` x ) ) |
128 |
127
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( ( x x. ( log ` x ) ) / x ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( log ` x ) ) ) |
129 |
126 128
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) - ( x x. ( log ` x ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( log ` x ) ) ) |
130 |
124 129
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( log ` x ) ) ) |
131 |
53 62 64
|
divcan3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x x. ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) / x ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) |
132 |
130 131
|
oveq12d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( ( x x. ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) / x ) ) = ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) ) |
133 |
65 112 132
|
3eqtr3rd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) = ( ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) |
134 |
43 54 133
|
3eqtrrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) = ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) - ( log ` x ) ) ) ) |
135 |
134
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) - ( log ` x ) ) ) ) ) |
136 |
20 12
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) e. RR ) |
137 |
39 136
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) e. RR ) |
138 |
22 51
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) e. RR ) |
139 |
138 12
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) - ( log ` x ) ) e. RR ) |
140 |
|
selberg3 |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |
141 |
140
|
a1i |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
142 |
20
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) |
143 |
51 21
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) e. RR ) |
144 |
143
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) e. CC ) |
145 |
12
|
rehalfcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. RR ) |
146 |
145
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. CC ) |
147 |
142 144 146
|
subdid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) - ( 2 x. ( ( log ` x ) / 2 ) ) ) ) |
148 |
142 13 52 47
|
div32d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) ) |
149 |
148
|
eqcomd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) |
150 |
|
2ne0 |
|- 2 =/= 0 |
151 |
150
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 =/= 0 ) |
152 |
13 142 151
|
divcan2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( ( log ` x ) / 2 ) ) = ( log ` x ) ) |
153 |
149 152
|
oveq12d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) - ( 2 x. ( ( log ` x ) / 2 ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) - ( log ` x ) ) ) |
154 |
147 153
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) - ( log ` x ) ) ) |
155 |
154
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) - ( log ` x ) ) ) ) |
156 |
143 145
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) e. RR ) |
157 |
|
ioossre |
|- ( 1 (,) +oo ) C_ RR |
158 |
|
o1const |
|- ( ( ( 1 (,) +oo ) C_ RR /\ 2 e. CC ) -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) |
159 |
157 45 158
|
mp2an |
|- ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) |
160 |
159
|
a1i |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) |
161 |
|
vmalogdivsum |
|- ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) |
162 |
161
|
a1i |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) ) |
163 |
20 156 160 162
|
o1mul2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) e. O(1) ) |
164 |
155 163
|
eqeltrrd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) - ( log ` x ) ) ) e. O(1) ) |
165 |
137 139 141 164
|
o1sub2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) - ( log ` x ) ) ) ) e. O(1) ) |
166 |
135 165
|
eqeltrd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) e. O(1) ) |
167 |
166
|
mptru |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( R ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) e. O(1) |