Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|- 2 e. RR |
2 |
1
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) |
3 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
4 |
3
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) |
5 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
6 |
5
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) |
7 |
6
|
simpld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) |
8 |
4 7
|
rplogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) |
9 |
2 8
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. RR ) |
10 |
|
fzfid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
11 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` x ) ) -> m e. NN ) |
12 |
11
|
adantl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. NN ) |
13 |
|
vmacl |
|- ( m e. NN -> ( Lam ` m ) e. RR ) |
14 |
12 13
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` m ) e. RR ) |
15 |
4
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
16 |
15 12
|
nndivred |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( x / m ) e. RR ) |
17 |
|
chpcl |
|- ( ( x / m ) e. RR -> ( psi ` ( x / m ) ) e. RR ) |
18 |
16 17
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / m ) ) e. RR ) |
19 |
14 18
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) e. RR ) |
20 |
12
|
nnrpd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. RR+ ) |
21 |
20
|
relogcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` m ) e. RR ) |
22 |
19 21
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) e. RR ) |
23 |
10 22
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) e. RR ) |
24 |
9 23
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) e. RR ) |
25 |
10 19
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) e. RR ) |
26 |
24 25
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) e. RR ) |
27 |
|
1rp |
|- 1 e. RR+ |
28 |
27
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
29 |
|
1red |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
30 |
29 4 7
|
ltled |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) |
31 |
4 28 30
|
rpgecld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) |
32 |
26 31
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) e. RR ) |
33 |
32
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) e. CC ) |
34 |
|
chpcl |
|- ( x e. RR -> ( psi ` x ) e. RR ) |
35 |
4 34
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( psi ` x ) e. RR ) |
36 |
31
|
relogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) |
37 |
35 36
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. RR ) |
38 |
37 25
|
readdcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) e. RR ) |
39 |
38 31
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) e. RR ) |
40 |
39
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) e. CC ) |
41 |
2 36
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) e. RR ) |
42 |
41
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) e. CC ) |
43 |
33 40 42
|
addsubassd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) |
44 |
26
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) e. CC ) |
45 |
38
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) e. CC ) |
46 |
4
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) |
47 |
31
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) |
48 |
44 45 46 47
|
divdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) + ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) ) / x ) = ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) ) |
49 |
24
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) e. CC ) |
50 |
25
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) e. CC ) |
51 |
37
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. CC ) |
52 |
49 50 51
|
nppcan3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) + ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) ) |
53 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` ( x / m ) ) ) -> n e. NN ) |
54 |
53
|
ad2antll |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> n e. NN ) |
55 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
56 |
54 55
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( Lam ` n ) e. RR ) |
57 |
14
|
adantrr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( Lam ` m ) e. RR ) |
58 |
20
|
adantrr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> m e. RR+ ) |
59 |
58
|
relogcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( log ` m ) e. RR ) |
60 |
57 59
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. RR ) |
61 |
56 60
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) e. RR ) |
62 |
61
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) e. CC ) |
63 |
4 62
|
fsumfldivdiag |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
64 |
14
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` m ) e. CC ) |
65 |
18
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / m ) ) e. CC ) |
66 |
21
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` m ) e. CC ) |
67 |
64 65 66
|
mul32d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = ( ( ( Lam ` m ) x. ( log ` m ) ) x. ( psi ` ( x / m ) ) ) ) |
68 |
64 66
|
mulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) |
69 |
68 65
|
mulcomd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( log ` m ) ) x. ( psi ` ( x / m ) ) ) = ( ( psi ` ( x / m ) ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
70 |
|
chpval |
|- ( ( x / m ) e. RR -> ( psi ` ( x / m ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) ) |
71 |
16 70
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / m ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) ) |
72 |
71
|
oveq1d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / m ) ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
73 |
|
fzfid |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / m ) ) ) e. Fin ) |
74 |
56
|
anassrs |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) -> ( Lam ` n ) e. RR ) |
75 |
74
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) -> ( Lam ` n ) e. CC ) |
76 |
73 68 75
|
fsummulc1 |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
77 |
72 76
|
eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / m ) ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
78 |
67 69 77
|
3eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
79 |
78
|
sumeq2dv |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
80 |
|
fzfid |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) |
81 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
82 |
81
|
adantl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
83 |
82 55
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
84 |
83
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) |
85 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) |
86 |
85
|
adantl |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) |
87 |
86 13
|
syl |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` m ) e. RR ) |
88 |
86
|
nnrpd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. RR+ ) |
89 |
88
|
relogcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( log ` m ) e. RR ) |
90 |
87 89
|
remulcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. RR ) |
91 |
90
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) |
92 |
80 84 91
|
fsummulc2 |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
93 |
92
|
sumeq2dv |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
94 |
63 79 93
|
3eqtr4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
95 |
94
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) ) |
96 |
95
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) ) |
97 |
52 96
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) + ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) ) |
98 |
97
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) + ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) ) / x ) = ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) |
99 |
48 98
|
eqtr3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) = ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) |
100 |
99
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
101 |
43 100
|
eqtr3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) = ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
102 |
101
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) |
103 |
39 41
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) e. RR ) |
104 |
|
selberg3lem2 |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) e. O(1) |
105 |
104
|
a1i |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) e. O(1) ) |
106 |
31
|
ex |
|- ( T. -> ( x e. ( 1 (,) +oo ) -> x e. RR+ ) ) |
107 |
106
|
ssrdv |
|- ( T. -> ( 1 (,) +oo ) C_ RR+ ) |
108 |
|
selberg2 |
|- ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |
109 |
108
|
a1i |
|- ( T. -> ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
110 |
107 109
|
o1res2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
111 |
32 103 105 110
|
o1add2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) e. O(1) ) |
112 |
102 111
|
eqeltrrd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
113 |
80 90
|
fsumrecl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) e. RR ) |
114 |
83 113
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) e. RR ) |
115 |
10 114
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) e. RR ) |
116 |
9 115
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) e. RR ) |
117 |
116 37
|
readdcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) e. RR ) |
118 |
117 31
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) e. RR ) |
119 |
118 41
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) e. RR ) |
120 |
119
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) e. CC ) |
121 |
4
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
122 |
121 82
|
nndivred |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) |
123 |
122
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( x / n ) e. RR ) |
124 |
123 86
|
nndivred |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x / n ) / m ) e. RR ) |
125 |
|
chpcl |
|- ( ( ( x / n ) / m ) e. RR -> ( psi ` ( ( x / n ) / m ) ) e. RR ) |
126 |
124 125
|
syl |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( psi ` ( ( x / n ) / m ) ) e. RR ) |
127 |
87 126
|
remulcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. RR ) |
128 |
80 127
|
fsumrecl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. RR ) |
129 |
83 128
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) |
130 |
10 129
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) |
131 |
9 130
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) e. RR ) |
132 |
37 131
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) e. RR ) |
133 |
132 31
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) e. RR ) |
134 |
133
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) e. CC ) |
135 |
116
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) e. CC ) |
136 |
131
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) e. CC ) |
137 |
51 135 136
|
pnncand |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) |
138 |
135 51
|
addcomd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) ) ) |
139 |
138
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) ) |
140 |
87
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` m ) e. CC ) |
141 |
89
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( log ` m ) e. CC ) |
142 |
126
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( psi ` ( ( x / n ) / m ) ) e. CC ) |
143 |
140 141 142
|
adddid |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) = ( ( ( Lam ` m ) x. ( log ` m ) ) + ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) |
144 |
143
|
sumeq2dv |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) x. ( log ` m ) ) + ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) |
145 |
127
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. CC ) |
146 |
80 91 145
|
fsumadd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) x. ( log ` m ) ) + ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) |
147 |
144 146
|
eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) |
148 |
147
|
oveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) = ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) |
149 |
113
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) |
150 |
128
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. CC ) |
151 |
84 149 150
|
adddid |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) = ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) |
152 |
148 151
|
eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) = ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) |
153 |
152
|
sumeq2dv |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) |
154 |
114
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) e. CC ) |
155 |
129
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. CC ) |
156 |
10 154 155
|
fsumadd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) |
157 |
153 156
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) |
158 |
157
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) |
159 |
9
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. CC ) |
160 |
115
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) e. CC ) |
161 |
130
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. CC ) |
162 |
159 160 161
|
adddid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) |
163 |
158 162
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) |
164 |
137 139 163
|
3eqtr4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) |
165 |
164
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) / x ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) |
166 |
117
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) e. CC ) |
167 |
51 136
|
subcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) e. CC ) |
168 |
166 167 46 47
|
divsubdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) / x ) = ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) ) |
169 |
|
2cnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) |
170 |
89 126
|
readdcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) e. RR ) |
171 |
87 170
|
remulcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) |
172 |
80 171
|
fsumrecl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) |
173 |
83 172
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) e. RR ) |
174 |
10 173
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) e. RR ) |
175 |
174
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) e. CC ) |
176 |
169 175
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) e. CC ) |
177 |
36
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) |
178 |
8
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) |
179 |
176 177 46 178 47
|
divdiv1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( log ` x ) ) / x ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( ( log ` x ) x. x ) ) ) |
180 |
177 46
|
mulcomd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) x. x ) = ( x x. ( log ` x ) ) ) |
181 |
180
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( ( log ` x ) x. x ) ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) |
182 |
179 181
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( log ` x ) ) / x ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) |
183 |
169 175 177 178
|
div23d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( log ` x ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) |
184 |
183
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( log ` x ) ) / x ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) |
185 |
31 8
|
rpmulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR+ ) |
186 |
185
|
rpcnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. CC ) |
187 |
185
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) =/= 0 ) |
188 |
169 175 186 187
|
divassd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) |
189 |
182 184 188
|
3eqtr3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) |
190 |
165 168 189
|
3eqtr3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) |
191 |
190
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) = ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) - ( 2 x. ( log ` x ) ) ) ) |
192 |
118
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) e. CC ) |
193 |
192 42 134
|
sub32d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) = ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) ) |
194 |
174 185
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) |
195 |
194
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. CC ) |
196 |
169 195 177
|
subdid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) = ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) - ( 2 x. ( log ` x ) ) ) ) |
197 |
191 193 196
|
3eqtr4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) = ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) ) |
198 |
197
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) ) ) |
199 |
194 36
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) e. RR ) |
200 |
|
ioossre |
|- ( 1 (,) +oo ) C_ RR |
201 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
202 |
|
o1const |
|- ( ( ( 1 (,) +oo ) C_ RR /\ 2 e. CC ) -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) |
203 |
200 201 202
|
sylancr |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) |
204 |
|
selbergb |
|- E. c e. RR+ A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c |
205 |
|
simpl |
|- ( ( c e. RR+ /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) -> c e. RR+ ) |
206 |
|
simpr |
|- ( ( c e. RR+ /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) |
207 |
205 206
|
selberg4lem1 |
|- ( ( c e. RR+ /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) e. O(1) ) |
208 |
207
|
rexlimiva |
|- ( E. c e. RR+ A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) e. O(1) ) |
209 |
204 208
|
mp1i |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) e. O(1) ) |
210 |
2 199 203 209
|
o1mul2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) ) e. O(1) ) |
211 |
198 210
|
eqeltrd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) ) e. O(1) ) |
212 |
120 134 211
|
o1dif |
|- ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) ) ) |
213 |
112 212
|
mpbid |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) ) |
214 |
213
|
mptru |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) |