| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
|- 2 e. RR |
| 2 |
1
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) |
| 3 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
| 4 |
3
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) |
| 5 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
| 6 |
5
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) |
| 7 |
6
|
simpld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) |
| 8 |
4 7
|
rplogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) |
| 9 |
2 8
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. RR ) |
| 10 |
|
fzfid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 11 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` x ) ) -> m e. NN ) |
| 12 |
11
|
adantl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. NN ) |
| 13 |
|
vmacl |
|- ( m e. NN -> ( Lam ` m ) e. RR ) |
| 14 |
12 13
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` m ) e. RR ) |
| 15 |
4
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
| 16 |
15 12
|
nndivred |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( x / m ) e. RR ) |
| 17 |
|
chpcl |
|- ( ( x / m ) e. RR -> ( psi ` ( x / m ) ) e. RR ) |
| 18 |
16 17
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / m ) ) e. RR ) |
| 19 |
14 18
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) e. RR ) |
| 20 |
12
|
nnrpd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. RR+ ) |
| 21 |
20
|
relogcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` m ) e. RR ) |
| 22 |
19 21
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) e. RR ) |
| 23 |
10 22
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) e. RR ) |
| 24 |
9 23
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) e. RR ) |
| 25 |
10 19
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) e. RR ) |
| 26 |
24 25
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) e. RR ) |
| 27 |
|
1rp |
|- 1 e. RR+ |
| 28 |
27
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
| 29 |
|
1red |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
| 30 |
29 4 7
|
ltled |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) |
| 31 |
4 28 30
|
rpgecld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) |
| 32 |
26 31
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) e. RR ) |
| 33 |
32
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) e. CC ) |
| 34 |
|
chpcl |
|- ( x e. RR -> ( psi ` x ) e. RR ) |
| 35 |
4 34
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( psi ` x ) e. RR ) |
| 36 |
31
|
relogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) |
| 37 |
35 36
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. RR ) |
| 38 |
37 25
|
readdcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) e. RR ) |
| 39 |
38 31
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) e. RR ) |
| 40 |
39
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) e. CC ) |
| 41 |
2 36
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) e. RR ) |
| 42 |
41
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) e. CC ) |
| 43 |
33 40 42
|
addsubassd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) |
| 44 |
26
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) e. CC ) |
| 45 |
38
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) e. CC ) |
| 46 |
4
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) |
| 47 |
31
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) |
| 48 |
44 45 46 47
|
divdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) + ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) ) / x ) = ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) ) |
| 49 |
24
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) e. CC ) |
| 50 |
25
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) e. CC ) |
| 51 |
37
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. CC ) |
| 52 |
49 50 51
|
nppcan3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) + ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) ) |
| 53 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` ( x / m ) ) ) -> n e. NN ) |
| 54 |
53
|
ad2antll |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> n e. NN ) |
| 55 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
| 56 |
54 55
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( Lam ` n ) e. RR ) |
| 57 |
14
|
adantrr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( Lam ` m ) e. RR ) |
| 58 |
20
|
adantrr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> m e. RR+ ) |
| 59 |
58
|
relogcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( log ` m ) e. RR ) |
| 60 |
57 59
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. RR ) |
| 61 |
56 60
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) e. RR ) |
| 62 |
61
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) e. CC ) |
| 63 |
4 62
|
fsumfldivdiag |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
| 64 |
14
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` m ) e. CC ) |
| 65 |
18
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / m ) ) e. CC ) |
| 66 |
21
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` m ) e. CC ) |
| 67 |
64 65 66
|
mul32d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = ( ( ( Lam ` m ) x. ( log ` m ) ) x. ( psi ` ( x / m ) ) ) ) |
| 68 |
64 66
|
mulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) |
| 69 |
68 65
|
mulcomd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( log ` m ) ) x. ( psi ` ( x / m ) ) ) = ( ( psi ` ( x / m ) ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
| 70 |
|
chpval |
|- ( ( x / m ) e. RR -> ( psi ` ( x / m ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) ) |
| 71 |
16 70
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / m ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) ) |
| 72 |
71
|
oveq1d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / m ) ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
| 73 |
|
fzfid |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / m ) ) ) e. Fin ) |
| 74 |
56
|
anassrs |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) -> ( Lam ` n ) e. RR ) |
| 75 |
74
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) -> ( Lam ` n ) e. CC ) |
| 76 |
73 68 75
|
fsummulc1 |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
| 77 |
72 76
|
eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / m ) ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
| 78 |
67 69 77
|
3eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
| 79 |
78
|
sumeq2dv |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
| 80 |
|
fzfid |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) |
| 81 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
| 82 |
81
|
adantl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 83 |
82 55
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
| 84 |
83
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) |
| 85 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) |
| 86 |
85
|
adantl |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) |
| 87 |
86 13
|
syl |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` m ) e. RR ) |
| 88 |
86
|
nnrpd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. RR+ ) |
| 89 |
88
|
relogcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( log ` m ) e. RR ) |
| 90 |
87 89
|
remulcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. RR ) |
| 91 |
90
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) |
| 92 |
80 84 91
|
fsummulc2 |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
| 93 |
92
|
sumeq2dv |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
| 94 |
63 79 93
|
3eqtr4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
| 95 |
94
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) ) |
| 96 |
95
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) ) |
| 97 |
52 96
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) + ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) ) |
| 98 |
97
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) + ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) ) / x ) = ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) |
| 99 |
48 98
|
eqtr3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) = ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) |
| 100 |
99
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
| 101 |
43 100
|
eqtr3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) = ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
| 102 |
101
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) |
| 103 |
39 41
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) e. RR ) |
| 104 |
|
selberg3lem2 |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) e. O(1) |
| 105 |
104
|
a1i |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) e. O(1) ) |
| 106 |
31
|
ex |
|- ( T. -> ( x e. ( 1 (,) +oo ) -> x e. RR+ ) ) |
| 107 |
106
|
ssrdv |
|- ( T. -> ( 1 (,) +oo ) C_ RR+ ) |
| 108 |
|
selberg2 |
|- ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |
| 109 |
108
|
a1i |
|- ( T. -> ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
| 110 |
107 109
|
o1res2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
| 111 |
32 103 105 110
|
o1add2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) e. O(1) ) |
| 112 |
102 111
|
eqeltrrd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
| 113 |
80 90
|
fsumrecl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) e. RR ) |
| 114 |
83 113
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) e. RR ) |
| 115 |
10 114
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) e. RR ) |
| 116 |
9 115
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) e. RR ) |
| 117 |
116 37
|
readdcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) e. RR ) |
| 118 |
117 31
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) e. RR ) |
| 119 |
118 41
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) e. RR ) |
| 120 |
119
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) e. CC ) |
| 121 |
4
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
| 122 |
121 82
|
nndivred |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) |
| 123 |
122
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( x / n ) e. RR ) |
| 124 |
123 86
|
nndivred |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x / n ) / m ) e. RR ) |
| 125 |
|
chpcl |
|- ( ( ( x / n ) / m ) e. RR -> ( psi ` ( ( x / n ) / m ) ) e. RR ) |
| 126 |
124 125
|
syl |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( psi ` ( ( x / n ) / m ) ) e. RR ) |
| 127 |
87 126
|
remulcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. RR ) |
| 128 |
80 127
|
fsumrecl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. RR ) |
| 129 |
83 128
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) |
| 130 |
10 129
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) |
| 131 |
9 130
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) e. RR ) |
| 132 |
37 131
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) e. RR ) |
| 133 |
132 31
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) e. RR ) |
| 134 |
133
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) e. CC ) |
| 135 |
116
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) e. CC ) |
| 136 |
131
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) e. CC ) |
| 137 |
51 135 136
|
pnncand |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) |
| 138 |
135 51
|
addcomd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) ) ) |
| 139 |
138
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) ) |
| 140 |
87
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` m ) e. CC ) |
| 141 |
89
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( log ` m ) e. CC ) |
| 142 |
126
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( psi ` ( ( x / n ) / m ) ) e. CC ) |
| 143 |
140 141 142
|
adddid |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) = ( ( ( Lam ` m ) x. ( log ` m ) ) + ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) |
| 144 |
143
|
sumeq2dv |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) x. ( log ` m ) ) + ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) |
| 145 |
127
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. CC ) |
| 146 |
80 91 145
|
fsumadd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) x. ( log ` m ) ) + ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) |
| 147 |
144 146
|
eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) |
| 148 |
147
|
oveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) = ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) |
| 149 |
113
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) |
| 150 |
128
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. CC ) |
| 151 |
84 149 150
|
adddid |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) = ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) |
| 152 |
148 151
|
eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) = ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) |
| 153 |
152
|
sumeq2dv |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) |
| 154 |
114
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) e. CC ) |
| 155 |
129
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. CC ) |
| 156 |
10 154 155
|
fsumadd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) |
| 157 |
153 156
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) |
| 158 |
157
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) |
| 159 |
9
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. CC ) |
| 160 |
115
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) e. CC ) |
| 161 |
130
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. CC ) |
| 162 |
159 160 161
|
adddid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) |
| 163 |
158 162
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) |
| 164 |
137 139 163
|
3eqtr4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) |
| 165 |
164
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) / x ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) |
| 166 |
117
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) e. CC ) |
| 167 |
51 136
|
subcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) e. CC ) |
| 168 |
166 167 46 47
|
divsubdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) / x ) = ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) ) |
| 169 |
|
2cnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) |
| 170 |
89 126
|
readdcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) e. RR ) |
| 171 |
87 170
|
remulcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) |
| 172 |
80 171
|
fsumrecl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) |
| 173 |
83 172
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) e. RR ) |
| 174 |
10 173
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) e. RR ) |
| 175 |
174
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) e. CC ) |
| 176 |
169 175
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) e. CC ) |
| 177 |
36
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) |
| 178 |
8
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) |
| 179 |
176 177 46 178 47
|
divdiv1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( log ` x ) ) / x ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( ( log ` x ) x. x ) ) ) |
| 180 |
177 46
|
mulcomd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) x. x ) = ( x x. ( log ` x ) ) ) |
| 181 |
180
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( ( log ` x ) x. x ) ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) |
| 182 |
179 181
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( log ` x ) ) / x ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) |
| 183 |
169 175 177 178
|
div23d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( log ` x ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) |
| 184 |
183
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( log ` x ) ) / x ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) |
| 185 |
31 8
|
rpmulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR+ ) |
| 186 |
185
|
rpcnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. CC ) |
| 187 |
185
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) =/= 0 ) |
| 188 |
169 175 186 187
|
divassd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) |
| 189 |
182 184 188
|
3eqtr3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) |
| 190 |
165 168 189
|
3eqtr3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) |
| 191 |
190
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) = ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) - ( 2 x. ( log ` x ) ) ) ) |
| 192 |
118
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) e. CC ) |
| 193 |
192 42 134
|
sub32d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) = ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) ) |
| 194 |
174 185
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) |
| 195 |
194
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. CC ) |
| 196 |
169 195 177
|
subdid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) = ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) - ( 2 x. ( log ` x ) ) ) ) |
| 197 |
191 193 196
|
3eqtr4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) = ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) ) |
| 198 |
197
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) ) ) |
| 199 |
194 36
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) e. RR ) |
| 200 |
|
ioossre |
|- ( 1 (,) +oo ) C_ RR |
| 201 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
| 202 |
|
o1const |
|- ( ( ( 1 (,) +oo ) C_ RR /\ 2 e. CC ) -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) |
| 203 |
200 201 202
|
sylancr |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) |
| 204 |
|
selbergb |
|- E. c e. RR+ A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c |
| 205 |
|
simpl |
|- ( ( c e. RR+ /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) -> c e. RR+ ) |
| 206 |
|
simpr |
|- ( ( c e. RR+ /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) |
| 207 |
205 206
|
selberg4lem1 |
|- ( ( c e. RR+ /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) e. O(1) ) |
| 208 |
207
|
rexlimiva |
|- ( E. c e. RR+ A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) e. O(1) ) |
| 209 |
204 208
|
mp1i |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) e. O(1) ) |
| 210 |
2 199 203 209
|
o1mul2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) ) e. O(1) ) |
| 211 |
198 210
|
eqeltrd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) ) e. O(1) ) |
| 212 |
120 134 211
|
o1dif |
|- ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) ) ) |
| 213 |
112 212
|
mpbid |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) ) |
| 214 |
213
|
mptru |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) |