| Step |
Hyp |
Ref |
Expression |
| 1 |
|
selberg4lem1.1 |
|- ( ph -> A e. RR+ ) |
| 2 |
|
selberg4lem1.2 |
|- ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ A ) |
| 3 |
|
2cnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) |
| 4 |
|
fzfid |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 5 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
| 6 |
5
|
adantl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 7 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
| 8 |
6 7
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
| 9 |
8 6
|
nndivred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) |
| 10 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
| 11 |
10
|
adantl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) |
| 12 |
|
1rp |
|- 1 e. RR+ |
| 13 |
12
|
a1i |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
| 14 |
|
1red |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
| 15 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
| 16 |
15
|
adantl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) |
| 17 |
16
|
simpld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) |
| 18 |
14 11 17
|
ltled |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) |
| 19 |
11 13 18
|
rpgecld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) |
| 20 |
19
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) |
| 21 |
6
|
nnrpd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
| 22 |
20 21
|
rpdivcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
| 23 |
22
|
relogcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) |
| 24 |
9 23
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) e. RR ) |
| 25 |
4 24
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) e. RR ) |
| 26 |
11 17
|
rplogcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) |
| 27 |
25 26
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) e. RR ) |
| 28 |
27
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) e. CC ) |
| 29 |
19
|
relogcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) |
| 30 |
29
|
rehalfcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. RR ) |
| 31 |
30
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. CC ) |
| 32 |
3 28 31
|
subdid |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) - ( 2 x. ( ( log ` x ) / 2 ) ) ) ) |
| 33 |
29
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) |
| 34 |
|
2ne0 |
|- 2 =/= 0 |
| 35 |
34
|
a1i |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 =/= 0 ) |
| 36 |
33 3 35
|
divcan2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( ( log ` x ) / 2 ) ) = ( log ` x ) ) |
| 37 |
36
|
oveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) - ( 2 x. ( ( log ` x ) / 2 ) ) ) = ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) - ( log ` x ) ) ) |
| 38 |
32 37
|
eqtrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) - ( log ` x ) ) ) |
| 39 |
38
|
mpteq2dva |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) - ( log ` x ) ) ) ) |
| 40 |
|
2re |
|- 2 e. RR |
| 41 |
40
|
a1i |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) |
| 42 |
27 30
|
resubcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) e. RR ) |
| 43 |
|
ioossre |
|- ( 1 (,) +oo ) C_ RR |
| 44 |
|
2cn |
|- 2 e. CC |
| 45 |
|
o1const |
|- ( ( ( 1 (,) +oo ) C_ RR /\ 2 e. CC ) -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) |
| 46 |
43 44 45
|
mp2an |
|- ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) |
| 47 |
46
|
a1i |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) |
| 48 |
|
vmalogdivsum2 |
|- ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) |
| 49 |
48
|
a1i |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) ) |
| 50 |
41 42 47 49
|
o1mul2 |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) e. O(1) ) |
| 51 |
39 50
|
eqeltrrd |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) - ( log ` x ) ) ) e. O(1) ) |
| 52 |
|
fzfid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) |
| 53 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) |
| 54 |
53
|
adantl |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) |
| 55 |
|
vmacl |
|- ( m e. NN -> ( Lam ` m ) e. RR ) |
| 56 |
54 55
|
syl |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` m ) e. RR ) |
| 57 |
54
|
nnrpd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. RR+ ) |
| 58 |
57
|
relogcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( log ` m ) e. RR ) |
| 59 |
11
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
| 60 |
59 6
|
nndivred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) |
| 61 |
60
|
adantr |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( x / n ) e. RR ) |
| 62 |
61 54
|
nndivred |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x / n ) / m ) e. RR ) |
| 63 |
|
chpcl |
|- ( ( ( x / n ) / m ) e. RR -> ( psi ` ( ( x / n ) / m ) ) e. RR ) |
| 64 |
62 63
|
syl |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( psi ` ( ( x / n ) / m ) ) e. RR ) |
| 65 |
58 64
|
readdcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) e. RR ) |
| 66 |
56 65
|
remulcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) |
| 67 |
52 66
|
fsumrecl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) |
| 68 |
8 67
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) e. RR ) |
| 69 |
4 68
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) e. RR ) |
| 70 |
19 26
|
rpmulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR+ ) |
| 71 |
69 70
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) |
| 72 |
71 29
|
resubcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) e. RR ) |
| 73 |
72
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) e. CC ) |
| 74 |
25
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) |
| 75 |
26
|
rpne0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) |
| 76 |
74 33 75
|
divcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) e. CC ) |
| 77 |
3 76
|
mulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) e. CC ) |
| 78 |
77 33
|
subcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) - ( log ` x ) ) e. CC ) |
| 79 |
71
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. CC ) |
| 80 |
79 77 33
|
nnncan2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) - ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) - ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) ) ) |
| 81 |
69
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) e. CC ) |
| 82 |
11
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) |
| 83 |
19
|
rpne0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) |
| 84 |
81 82 33 83 75
|
divdiv1d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) / ( log ` x ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) |
| 85 |
3 74 33 75
|
divassd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) / ( log ` x ) ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) ) |
| 86 |
84 85
|
oveq12d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) / ( log ` x ) ) - ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) ) ) |
| 87 |
69 19
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) e. RR ) |
| 88 |
87
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) e. CC ) |
| 89 |
3 74
|
mulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. CC ) |
| 90 |
88 89 33 75
|
divsubdird |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) / ( log ` x ) ) = ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) / ( log ` x ) ) - ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) ) |
| 91 |
83
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x =/= 0 ) |
| 92 |
68 59 91
|
redivcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) e. RR ) |
| 93 |
92
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) e. CC ) |
| 94 |
40
|
a1i |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. RR ) |
| 95 |
94 24
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. RR ) |
| 96 |
95
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. CC ) |
| 97 |
4 93 96
|
fsumsub |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) - ( 2 x. ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) |
| 98 |
8
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) |
| 99 |
67 59 91
|
redivcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) e. RR ) |
| 100 |
99
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) e. CC ) |
| 101 |
|
2cnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. CC ) |
| 102 |
23
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. CC ) |
| 103 |
6
|
nncnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
| 104 |
6
|
nnne0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) |
| 105 |
102 103 104
|
divcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) / n ) e. CC ) |
| 106 |
101 105
|
mulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( log ` ( x / n ) ) / n ) ) e. CC ) |
| 107 |
98 100 106
|
subdid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) = ( ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) ) - ( ( Lam ` n ) x. ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) |
| 108 |
67
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) e. CC ) |
| 109 |
82
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) |
| 110 |
98 108 109 91
|
divassd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) = ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) ) ) |
| 111 |
98 103 102 104
|
div32d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) = ( ( Lam ` n ) x. ( ( log ` ( x / n ) ) / n ) ) ) |
| 112 |
111
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( 2 x. ( ( Lam ` n ) x. ( ( log ` ( x / n ) ) / n ) ) ) ) |
| 113 |
101 98 105
|
mul12d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( Lam ` n ) x. ( ( log ` ( x / n ) ) / n ) ) ) = ( ( Lam ` n ) x. ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) |
| 114 |
112 113
|
eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( ( Lam ` n ) x. ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) |
| 115 |
110 114
|
oveq12d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) - ( 2 x. ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = ( ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) ) - ( ( Lam ` n ) x. ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) |
| 116 |
107 115
|
eqtr4d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) = ( ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) - ( 2 x. ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) |
| 117 |
116
|
sumeq2dv |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) - ( 2 x. ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) |
| 118 |
68
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) e. CC ) |
| 119 |
4 82 118 83
|
fsumdivc |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) ) |
| 120 |
24
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) |
| 121 |
4 3 120
|
fsummulc2 |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) |
| 122 |
119 121
|
oveq12d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) |
| 123 |
97 117 122
|
3eqtr4rd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) |
| 124 |
123
|
oveq1d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) / ( log ` x ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) / ( log ` x ) ) ) |
| 125 |
90 124
|
eqtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / x ) / ( log ` x ) ) - ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) ) / ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) / ( log ` x ) ) ) |
| 126 |
80 86 125
|
3eqtr2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) - ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) - ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) / ( log ` x ) ) ) |
| 127 |
126
|
mpteq2dva |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) - ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) - ( log ` x ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) / ( log ` x ) ) ) ) |
| 128 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 129 |
1
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. RR+ ) |
| 130 |
129
|
rpred |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. RR ) |
| 131 |
4 9
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. RR ) |
| 132 |
131 26
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) e. RR ) |
| 133 |
1
|
rpcnd |
|- ( ph -> A e. CC ) |
| 134 |
|
o1const |
|- ( ( ( 1 (,) +oo ) C_ RR /\ A e. CC ) -> ( x e. ( 1 (,) +oo ) |-> A ) e. O(1) ) |
| 135 |
43 133 134
|
sylancr |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> A ) e. O(1) ) |
| 136 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 137 |
|
o1const |
|- ( ( ( 1 (,) +oo ) C_ RR /\ 1 e. CC ) -> ( x e. ( 1 (,) +oo ) |-> 1 ) e. O(1) ) |
| 138 |
43 136 137
|
sylancr |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> 1 ) e. O(1) ) |
| 139 |
132
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) e. CC ) |
| 140 |
|
1cnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. CC ) |
| 141 |
131
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. CC ) |
| 142 |
141 33 33 75
|
divsubdird |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) / ( log ` x ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - ( ( log ` x ) / ( log ` x ) ) ) ) |
| 143 |
141 33
|
subcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) e. CC ) |
| 144 |
143 33 75
|
divrecd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) / ( log ` x ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( 1 / ( log ` x ) ) ) ) |
| 145 |
33 75
|
dividd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / ( log ` x ) ) = 1 ) |
| 146 |
145
|
oveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - ( ( log ` x ) / ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - 1 ) ) |
| 147 |
142 144 146
|
3eqtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( 1 / ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - 1 ) ) |
| 148 |
147
|
mpteq2dva |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( 1 / ( log ` x ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - 1 ) ) ) |
| 149 |
131 29
|
resubcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) e. RR ) |
| 150 |
14 26
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 / ( log ` x ) ) e. RR ) |
| 151 |
19
|
ex |
|- ( ph -> ( x e. ( 1 (,) +oo ) -> x e. RR+ ) ) |
| 152 |
151
|
ssrdv |
|- ( ph -> ( 1 (,) +oo ) C_ RR+ ) |
| 153 |
|
vmadivsum |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) |
| 154 |
153
|
a1i |
|- ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) ) |
| 155 |
152 154
|
o1res2 |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) ) |
| 156 |
|
divlogrlim |
|- ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 |
| 157 |
|
rlimo1 |
|- ( ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) |
| 158 |
156 157
|
mp1i |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) |
| 159 |
149 150 155 158
|
o1mul2 |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( 1 / ( log ` x ) ) ) ) e. O(1) ) |
| 160 |
148 159
|
eqeltrrd |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) - 1 ) ) e. O(1) ) |
| 161 |
139 140 160
|
o1dif |
|- ( ph -> ( ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> 1 ) e. O(1) ) ) |
| 162 |
138 161
|
mpbird |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) e. O(1) ) |
| 163 |
130 132 135 162
|
o1mul2 |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) ) e. O(1) ) |
| 164 |
130 132
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) e. RR ) |
| 165 |
23 6
|
nndivred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) / n ) e. RR ) |
| 166 |
94 165
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( log ` ( x / n ) ) / n ) ) e. RR ) |
| 167 |
99 166
|
resubcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) e. RR ) |
| 168 |
8 167
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) e. RR ) |
| 169 |
4 168
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) e. RR ) |
| 170 |
169 26
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) / ( log ` x ) ) e. RR ) |
| 171 |
170
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) / ( log ` x ) ) e. CC ) |
| 172 |
169
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) e. CC ) |
| 173 |
172
|
abscld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) e. RR ) |
| 174 |
130 131
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) ) e. RR ) |
| 175 |
100 106
|
subcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) e. CC ) |
| 176 |
98 175
|
mulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) e. CC ) |
| 177 |
176
|
abscld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) e. RR ) |
| 178 |
4 177
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) e. RR ) |
| 179 |
168
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) e. CC ) |
| 180 |
4 179
|
fsumabs |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) ) |
| 181 |
130
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A e. RR ) |
| 182 |
181 9
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A x. ( ( Lam ` n ) / n ) ) e. RR ) |
| 183 |
175
|
abscld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) e. RR ) |
| 184 |
181 6
|
nndivred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A / n ) e. RR ) |
| 185 |
|
vmage0 |
|- ( n e. NN -> 0 <_ ( Lam ` n ) ) |
| 186 |
6 185
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( Lam ` n ) ) |
| 187 |
108 109 103 91 104
|
divdiv2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / ( x / n ) ) = ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) x. n ) / x ) ) |
| 188 |
108 103 109 91
|
div23d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) x. n ) / x ) = ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) x. n ) ) |
| 189 |
187 188
|
eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / ( x / n ) ) = ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) x. n ) ) |
| 190 |
101 105 103
|
mulassd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. ( ( log ` ( x / n ) ) / n ) ) x. n ) = ( 2 x. ( ( ( log ` ( x / n ) ) / n ) x. n ) ) ) |
| 191 |
102 103 104
|
divcan1d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / n ) ) / n ) x. n ) = ( log ` ( x / n ) ) ) |
| 192 |
191
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( ( log ` ( x / n ) ) / n ) x. n ) ) = ( 2 x. ( log ` ( x / n ) ) ) ) |
| 193 |
190 192
|
eqtr2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( log ` ( x / n ) ) ) = ( ( 2 x. ( ( log ` ( x / n ) ) / n ) ) x. n ) ) |
| 194 |
189 193
|
oveq12d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / ( x / n ) ) - ( 2 x. ( log ` ( x / n ) ) ) ) = ( ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) x. n ) - ( ( 2 x. ( ( log ` ( x / n ) ) / n ) ) x. n ) ) ) |
| 195 |
100 106 103
|
subdird |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) x. n ) = ( ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) x. n ) - ( ( 2 x. ( ( log ` ( x / n ) ) / n ) ) x. n ) ) ) |
| 196 |
194 195
|
eqtr4d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / ( x / n ) ) - ( 2 x. ( log ` ( x / n ) ) ) ) = ( ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) x. n ) ) |
| 197 |
196
|
fveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / ( x / n ) ) - ( 2 x. ( log ` ( x / n ) ) ) ) ) = ( abs ` ( ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) x. n ) ) ) |
| 198 |
175 103
|
absmuld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) x. n ) ) = ( ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) x. ( abs ` n ) ) ) |
| 199 |
6
|
nnred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR ) |
| 200 |
21
|
rpge0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ n ) |
| 201 |
199 200
|
absidd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` n ) = n ) |
| 202 |
201
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) x. ( abs ` n ) ) = ( ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) x. n ) ) |
| 203 |
197 198 202
|
3eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / ( x / n ) ) - ( 2 x. ( log ` ( x / n ) ) ) ) ) = ( ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) x. n ) ) |
| 204 |
|
fveq2 |
|- ( i = m -> ( Lam ` i ) = ( Lam ` m ) ) |
| 205 |
|
fveq2 |
|- ( i = m -> ( log ` i ) = ( log ` m ) ) |
| 206 |
|
oveq2 |
|- ( i = m -> ( y / i ) = ( y / m ) ) |
| 207 |
206
|
fveq2d |
|- ( i = m -> ( psi ` ( y / i ) ) = ( psi ` ( y / m ) ) ) |
| 208 |
205 207
|
oveq12d |
|- ( i = m -> ( ( log ` i ) + ( psi ` ( y / i ) ) ) = ( ( log ` m ) + ( psi ` ( y / m ) ) ) ) |
| 209 |
204 208
|
oveq12d |
|- ( i = m -> ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) = ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( y / m ) ) ) ) ) |
| 210 |
209
|
cbvsumv |
|- sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) = sum_ m e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( y / m ) ) ) ) |
| 211 |
|
fveq2 |
|- ( y = ( x / n ) -> ( |_ ` y ) = ( |_ ` ( x / n ) ) ) |
| 212 |
211
|
oveq2d |
|- ( y = ( x / n ) -> ( 1 ... ( |_ ` y ) ) = ( 1 ... ( |_ ` ( x / n ) ) ) ) |
| 213 |
|
fvoveq1 |
|- ( y = ( x / n ) -> ( psi ` ( y / m ) ) = ( psi ` ( ( x / n ) / m ) ) ) |
| 214 |
213
|
oveq2d |
|- ( y = ( x / n ) -> ( ( log ` m ) + ( psi ` ( y / m ) ) ) = ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) |
| 215 |
214
|
oveq2d |
|- ( y = ( x / n ) -> ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( y / m ) ) ) ) = ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) |
| 216 |
215
|
adantr |
|- ( ( y = ( x / n ) /\ m e. ( 1 ... ( |_ ` y ) ) ) -> ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( y / m ) ) ) ) = ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) |
| 217 |
212 216
|
sumeq12dv |
|- ( y = ( x / n ) -> sum_ m e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( y / m ) ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) |
| 218 |
210 217
|
eqtrid |
|- ( y = ( x / n ) -> sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) |
| 219 |
|
id |
|- ( y = ( x / n ) -> y = ( x / n ) ) |
| 220 |
218 219
|
oveq12d |
|- ( y = ( x / n ) -> ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / ( x / n ) ) ) |
| 221 |
|
fveq2 |
|- ( y = ( x / n ) -> ( log ` y ) = ( log ` ( x / n ) ) ) |
| 222 |
221
|
oveq2d |
|- ( y = ( x / n ) -> ( 2 x. ( log ` y ) ) = ( 2 x. ( log ` ( x / n ) ) ) ) |
| 223 |
220 222
|
oveq12d |
|- ( y = ( x / n ) -> ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) = ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / ( x / n ) ) - ( 2 x. ( log ` ( x / n ) ) ) ) ) |
| 224 |
223
|
fveq2d |
|- ( y = ( x / n ) -> ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) = ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / ( x / n ) ) - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) |
| 225 |
224
|
breq1d |
|- ( y = ( x / n ) -> ( ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ A <-> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / ( x / n ) ) - ( 2 x. ( log ` ( x / n ) ) ) ) ) <_ A ) ) |
| 226 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ A ) |
| 227 |
103
|
mullidd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) = n ) |
| 228 |
|
fznnfl |
|- ( x e. RR -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) |
| 229 |
11 228
|
syl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) |
| 230 |
229
|
simplbda |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n <_ x ) |
| 231 |
227 230
|
eqbrtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) <_ x ) |
| 232 |
|
1red |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) |
| 233 |
232 59 21
|
lemuldivd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 x. n ) <_ x <-> 1 <_ ( x / n ) ) ) |
| 234 |
231 233
|
mpbid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ ( x / n ) ) |
| 235 |
|
1re |
|- 1 e. RR |
| 236 |
|
elicopnf |
|- ( 1 e. RR -> ( ( x / n ) e. ( 1 [,) +oo ) <-> ( ( x / n ) e. RR /\ 1 <_ ( x / n ) ) ) ) |
| 237 |
235 236
|
ax-mp |
|- ( ( x / n ) e. ( 1 [,) +oo ) <-> ( ( x / n ) e. RR /\ 1 <_ ( x / n ) ) ) |
| 238 |
60 234 237
|
sylanbrc |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. ( 1 [,) +oo ) ) |
| 239 |
225 226 238
|
rspcdva |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / ( x / n ) ) - ( 2 x. ( log ` ( x / n ) ) ) ) ) <_ A ) |
| 240 |
203 239
|
eqbrtrrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) x. n ) <_ A ) |
| 241 |
183 181 21
|
lemuldivd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) x. n ) <_ A <-> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) <_ ( A / n ) ) ) |
| 242 |
240 241
|
mpbid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) <_ ( A / n ) ) |
| 243 |
183 184 8 186 242
|
lemul2ad |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) <_ ( ( Lam ` n ) x. ( A / n ) ) ) |
| 244 |
98 175
|
absmuld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) = ( ( abs ` ( Lam ` n ) ) x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) ) |
| 245 |
8 186
|
absidd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( Lam ` n ) ) = ( Lam ` n ) ) |
| 246 |
245
|
oveq1d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( Lam ` n ) ) x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) = ( ( Lam ` n ) x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) ) |
| 247 |
244 246
|
eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) = ( ( Lam ` n ) x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) ) |
| 248 |
133
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A e. CC ) |
| 249 |
248 98 103 104
|
div12d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A x. ( ( Lam ` n ) / n ) ) = ( ( Lam ` n ) x. ( A / n ) ) ) |
| 250 |
243 247 249
|
3brtr4d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) <_ ( A x. ( ( Lam ` n ) / n ) ) ) |
| 251 |
4 177 182 250
|
fsumle |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( A x. ( ( Lam ` n ) / n ) ) ) |
| 252 |
133
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. CC ) |
| 253 |
9
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) |
| 254 |
4 252 253
|
fsummulc2 |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( A x. ( ( Lam ` n ) / n ) ) ) |
| 255 |
251 254
|
breqtrrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) <_ ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) ) ) |
| 256 |
173 178 174 180 255
|
letrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) <_ ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) ) ) |
| 257 |
173 174 26 256
|
lediv1dd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) / ( log ` x ) ) <_ ( ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) ) / ( log ` x ) ) ) |
| 258 |
252 141 33 75
|
divassd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) ) / ( log ` x ) ) = ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) ) |
| 259 |
257 258
|
breqtrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) / ( log ` x ) ) <_ ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) ) |
| 260 |
172 33 75
|
absdivd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) / ( log ` x ) ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) / ( abs ` ( log ` x ) ) ) ) |
| 261 |
26
|
rpge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( log ` x ) ) |
| 262 |
29 261
|
absidd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( log ` x ) ) = ( log ` x ) ) |
| 263 |
262
|
oveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) / ( abs ` ( log ` x ) ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) / ( log ` x ) ) ) |
| 264 |
260 263
|
eqtrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) / ( log ` x ) ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) ) / ( log ` x ) ) ) |
| 265 |
129
|
rpge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ A ) |
| 266 |
8 21 186
|
divge0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( Lam ` n ) / n ) ) |
| 267 |
4 9 266
|
fsumge0 |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) ) |
| 268 |
131 26 267
|
divge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) |
| 269 |
130 132 265 268
|
mulge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) ) |
| 270 |
164 269
|
absidd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) ) = ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) ) |
| 271 |
259 264 270
|
3brtr4d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) / ( log ` x ) ) ) <_ ( abs ` ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) ) ) |
| 272 |
271
|
adantrr |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) / ( log ` x ) ) ) <_ ( abs ` ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) / ( log ` x ) ) ) ) ) |
| 273 |
128 163 164 171 272
|
o1le |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) / x ) - ( 2 x. ( ( log ` ( x / n ) ) / n ) ) ) ) / ( log ` x ) ) ) e. O(1) ) |
| 274 |
127 273
|
eqeltrd |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) - ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) - ( log ` x ) ) ) ) e. O(1) ) |
| 275 |
73 78 274
|
o1dif |
|- ( ph -> ( ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) ) - ( log ` x ) ) ) e. O(1) ) ) |
| 276 |
51 275
|
mpbird |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) e. O(1) ) |