Step |
Hyp |
Ref |
Expression |
1 |
|
pntrval.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
2 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
3 |
2
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) |
4 |
|
1rp |
|- 1 e. RR+ |
5 |
4
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
6 |
|
1red |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
7 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
8 |
7
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) |
9 |
8
|
simpld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) |
10 |
6 3 9
|
ltled |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) |
11 |
3 5 10
|
rpgecld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) |
12 |
1
|
pntrval |
|- ( x e. RR+ -> ( R ` x ) = ( ( psi ` x ) - x ) ) |
13 |
11 12
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) = ( ( psi ` x ) - x ) ) |
14 |
13
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( R ` x ) x. ( log ` x ) ) = ( ( ( psi ` x ) - x ) x. ( log ` x ) ) ) |
15 |
|
chpcl |
|- ( x e. RR -> ( psi ` x ) e. RR ) |
16 |
3 15
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( psi ` x ) e. RR ) |
17 |
16
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( psi ` x ) e. CC ) |
18 |
3
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) |
19 |
11
|
relogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) |
20 |
19
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) |
21 |
17 18 20
|
subdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) - x ) x. ( log ` x ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) ) |
22 |
14 21
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( R ` x ) x. ( log ` x ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) ) |
23 |
11
|
ad2antrr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> x e. RR+ ) |
24 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
25 |
24
|
adantl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
26 |
25
|
nnrpd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
27 |
26
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> n e. RR+ ) |
28 |
23 27
|
rpdivcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( x / n ) e. RR+ ) |
29 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) |
30 |
29
|
adantl |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) |
31 |
30
|
nnrpd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. RR+ ) |
32 |
28 31
|
rpdivcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x / n ) / m ) e. RR+ ) |
33 |
1
|
pntrval |
|- ( ( ( x / n ) / m ) e. RR+ -> ( R ` ( ( x / n ) / m ) ) = ( ( psi ` ( ( x / n ) / m ) ) - ( ( x / n ) / m ) ) ) |
34 |
32 33
|
syl |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( R ` ( ( x / n ) / m ) ) = ( ( psi ` ( ( x / n ) / m ) ) - ( ( x / n ) / m ) ) ) |
35 |
34
|
oveq2d |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) = ( ( Lam ` m ) x. ( ( psi ` ( ( x / n ) / m ) ) - ( ( x / n ) / m ) ) ) ) |
36 |
|
vmacl |
|- ( m e. NN -> ( Lam ` m ) e. RR ) |
37 |
30 36
|
syl |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` m ) e. RR ) |
38 |
37
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` m ) e. CC ) |
39 |
3
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
40 |
39 25
|
nndivred |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) |
41 |
40
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( x / n ) e. RR ) |
42 |
41 30
|
nndivred |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x / n ) / m ) e. RR ) |
43 |
|
chpcl |
|- ( ( ( x / n ) / m ) e. RR -> ( psi ` ( ( x / n ) / m ) ) e. RR ) |
44 |
42 43
|
syl |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( psi ` ( ( x / n ) / m ) ) e. RR ) |
45 |
44
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( psi ` ( ( x / n ) / m ) ) e. CC ) |
46 |
42
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x / n ) / m ) e. CC ) |
47 |
38 45 46
|
subdid |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( psi ` ( ( x / n ) / m ) ) - ( ( x / n ) / m ) ) ) = ( ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) |
48 |
35 47
|
eqtrd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) = ( ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) |
49 |
48
|
sumeq2dv |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) |
50 |
|
fzfid |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) |
51 |
37 44
|
remulcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. RR ) |
52 |
51
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. CC ) |
53 |
38 46
|
mulcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( x / n ) / m ) ) e. CC ) |
54 |
50 52 53
|
fsumsub |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) |
55 |
49 54
|
eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) |
56 |
55
|
oveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) = ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) |
57 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
58 |
25 57
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
59 |
58
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) |
60 |
50 51
|
fsumrecl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. RR ) |
61 |
60
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. CC ) |
62 |
50 53
|
fsumcl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) e. CC ) |
63 |
59 61 62
|
subdid |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) = ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) |
64 |
56 63
|
eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) = ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) |
65 |
64
|
sumeq2dv |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) |
66 |
|
fzfid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
67 |
58 60
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) |
68 |
67
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. CC ) |
69 |
59 62
|
mulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) e. CC ) |
70 |
66 68 69
|
fsumsub |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) |
71 |
65 70
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) |
72 |
71
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) |
73 |
|
2re |
|- 2 e. RR |
74 |
73
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) |
75 |
3 9
|
rplogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) |
76 |
74 75
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. RR ) |
77 |
76
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. CC ) |
78 |
66 67
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) |
79 |
78
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. CC ) |
80 |
66 69
|
fsumcl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) e. CC ) |
81 |
77 79 80
|
subdid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) |
82 |
72 81
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) |
83 |
22 82
|
oveq12d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( R ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) ) |
84 |
16 19
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. RR ) |
85 |
84
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. CC ) |
86 |
18 20
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. CC ) |
87 |
76 78
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) e. RR ) |
88 |
87
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) e. CC ) |
89 |
77 80
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) e. CC ) |
90 |
85 86 88 89
|
sub4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) - ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) ) |
91 |
83 90
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( R ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) - ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) ) |
92 |
91
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( R ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) - ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) / x ) ) |
93 |
84 87
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) e. RR ) |
94 |
93
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) e. CC ) |
95 |
3 19
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR ) |
96 |
37 42
|
remulcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( x / n ) / m ) ) e. RR ) |
97 |
50 96
|
fsumrecl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) e. RR ) |
98 |
58 97
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) e. RR ) |
99 |
66 98
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) e. RR ) |
100 |
76 99
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) e. RR ) |
101 |
95 100
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) e. RR ) |
102 |
101
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) e. CC ) |
103 |
11
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) |
104 |
94 102 18 103
|
divsubdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) - ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) - ( ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) / x ) ) ) |
105 |
95
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. CC ) |
106 |
99
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) e. CC ) |
107 |
77 106
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) e. CC ) |
108 |
105 107 18 103
|
divsubdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) / x ) = ( ( ( x x. ( log ` x ) ) / x ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) / x ) ) ) |
109 |
20 18 103
|
divcan3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x x. ( log ` x ) ) / x ) = ( log ` x ) ) |
110 |
77 106 18 103
|
divassd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) / x ) = ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) ) ) |
111 |
98
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) e. CC ) |
112 |
66 18 111 103
|
fsumdivc |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) ) |
113 |
41
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( x / n ) e. CC ) |
114 |
30
|
nncnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. CC ) |
115 |
30
|
nnne0d |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m =/= 0 ) |
116 |
113 38 114 115
|
div12d |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x / n ) x. ( ( Lam ` m ) / m ) ) = ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) |
117 |
18
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) |
118 |
117
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> x e. CC ) |
119 |
25
|
nncnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
120 |
119
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> n e. CC ) |
121 |
37 30
|
nndivred |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) / m ) e. RR ) |
122 |
121
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) / m ) e. CC ) |
123 |
25
|
nnne0d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) |
124 |
123
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> n =/= 0 ) |
125 |
118 120 122 124
|
div32d |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x / n ) x. ( ( Lam ` m ) / m ) ) = ( x x. ( ( ( Lam ` m ) / m ) / n ) ) ) |
126 |
116 125
|
eqtr3d |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( x / n ) / m ) ) = ( x x. ( ( ( Lam ` m ) / m ) / n ) ) ) |
127 |
126
|
oveq1d |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) = ( ( x x. ( ( ( Lam ` m ) / m ) / n ) ) / x ) ) |
128 |
25
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> n e. NN ) |
129 |
121 128
|
nndivred |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( ( Lam ` m ) / m ) / n ) e. RR ) |
130 |
129
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( ( Lam ` m ) / m ) / n ) e. CC ) |
131 |
103
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x =/= 0 ) |
132 |
131
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> x =/= 0 ) |
133 |
130 118 132
|
divcan3d |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x x. ( ( ( Lam ` m ) / m ) / n ) ) / x ) = ( ( ( Lam ` m ) / m ) / n ) ) |
134 |
127 133
|
eqtrd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) = ( ( ( Lam ` m ) / m ) / n ) ) |
135 |
134
|
sumeq2dv |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) / m ) / n ) ) |
136 |
96
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( x / n ) / m ) ) e. CC ) |
137 |
50 117 136 131
|
fsumdivc |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) ) |
138 |
50 119 122 123
|
fsumdivc |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) / n ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) / m ) / n ) ) |
139 |
135 137 138
|
3eqtr4d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) / n ) ) |
140 |
139
|
oveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) ) = ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) / n ) ) ) |
141 |
97
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) e. CC ) |
142 |
59 141 117 131
|
divassd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) = ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) ) ) |
143 |
50 121
|
fsumrecl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) e. RR ) |
144 |
143
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) e. CC ) |
145 |
59 119 144 123
|
div32d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) = ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) / n ) ) ) |
146 |
140 142 145
|
3eqtr4d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) = ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) |
147 |
146
|
sumeq2dv |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) |
148 |
112 147
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) |
149 |
148
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) ) |
150 |
110 149
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) / x ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) ) |
151 |
109 150
|
oveq12d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x x. ( log ` x ) ) / x ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) / x ) ) = ( ( log ` x ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) ) ) |
152 |
108 151
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) / x ) = ( ( log ` x ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) ) ) |
153 |
152
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) - ( ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) / x ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) - ( ( log ` x ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) ) ) ) |
154 |
94 18 103
|
divcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) e. CC ) |
155 |
58 25
|
nndivred |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) |
156 |
155 143
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) e. RR ) |
157 |
66 156
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) e. RR ) |
158 |
76 157
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) e. RR ) |
159 |
158
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) e. CC ) |
160 |
154 20 159
|
subsub2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) - ( ( log ` x ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) ) |
161 |
153 160
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) - ( ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) / x ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) ) |
162 |
104 161
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) - ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) ) |
163 |
92 162
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( R ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) ) |
164 |
163
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( R ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) ) ) |
165 |
93 11
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) e. RR ) |
166 |
158 19
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) e. RR ) |
167 |
|
selberg4 |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) |
168 |
167
|
a1i |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) ) |
169 |
|
2cnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) |
170 |
157 75
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) e. RR ) |
171 |
170
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) e. CC ) |
172 |
19
|
rehalfcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. RR ) |
173 |
172
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. CC ) |
174 |
169 171 173
|
subdid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) ) - ( 2 x. ( ( log ` x ) / 2 ) ) ) ) |
175 |
157
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) e. CC ) |
176 |
75
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) |
177 |
169 20 175 176
|
div32d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) ) ) |
178 |
177
|
eqcomd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) ) |
179 |
|
2ne0 |
|- 2 =/= 0 |
180 |
179
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 =/= 0 ) |
181 |
20 169 180
|
divcan2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( ( log ` x ) / 2 ) ) = ( log ` x ) ) |
182 |
178 181
|
oveq12d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) ) - ( 2 x. ( ( log ` x ) / 2 ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) |
183 |
174 182
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) |
184 |
183
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) ) |
185 |
170 172
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) e. RR ) |
186 |
|
ioossre |
|- ( 1 (,) +oo ) C_ RR |
187 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
188 |
|
o1const |
|- ( ( ( 1 (,) +oo ) C_ RR /\ 2 e. CC ) -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) |
189 |
186 187 188
|
sylancr |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) |
190 |
|
2vmadivsum |
|- ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) |
191 |
190
|
a1i |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) ) |
192 |
74 185 189 191
|
o1mul2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) e. O(1) ) |
193 |
184 192
|
eqeltrrd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) e. O(1) ) |
194 |
165 166 168 193
|
o1add2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) ) e. O(1) ) |
195 |
164 194
|
eqeltrd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( R ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) ) |
196 |
195
|
mptru |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( R ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) |