| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntrval.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
| 2 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
| 3 |
2
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) |
| 4 |
|
1rp |
|- 1 e. RR+ |
| 5 |
4
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
| 6 |
|
1red |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
| 7 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
| 8 |
7
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) |
| 9 |
8
|
simpld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) |
| 10 |
6 3 9
|
ltled |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) |
| 11 |
3 5 10
|
rpgecld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) |
| 12 |
1
|
pntrval |
|- ( x e. RR+ -> ( R ` x ) = ( ( psi ` x ) - x ) ) |
| 13 |
11 12
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) = ( ( psi ` x ) - x ) ) |
| 14 |
13
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( R ` x ) x. ( log ` x ) ) = ( ( ( psi ` x ) - x ) x. ( log ` x ) ) ) |
| 15 |
|
chpcl |
|- ( x e. RR -> ( psi ` x ) e. RR ) |
| 16 |
3 15
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( psi ` x ) e. RR ) |
| 17 |
16
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( psi ` x ) e. CC ) |
| 18 |
3
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) |
| 19 |
11
|
relogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) |
| 20 |
19
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) |
| 21 |
17 18 20
|
subdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) - x ) x. ( log ` x ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) ) |
| 22 |
14 21
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( R ` x ) x. ( log ` x ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) ) |
| 23 |
11
|
ad2antrr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> x e. RR+ ) |
| 24 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
| 25 |
24
|
adantl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 26 |
25
|
nnrpd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
| 27 |
26
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> n e. RR+ ) |
| 28 |
23 27
|
rpdivcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( x / n ) e. RR+ ) |
| 29 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) |
| 30 |
29
|
adantl |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) |
| 31 |
30
|
nnrpd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. RR+ ) |
| 32 |
28 31
|
rpdivcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x / n ) / m ) e. RR+ ) |
| 33 |
1
|
pntrval |
|- ( ( ( x / n ) / m ) e. RR+ -> ( R ` ( ( x / n ) / m ) ) = ( ( psi ` ( ( x / n ) / m ) ) - ( ( x / n ) / m ) ) ) |
| 34 |
32 33
|
syl |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( R ` ( ( x / n ) / m ) ) = ( ( psi ` ( ( x / n ) / m ) ) - ( ( x / n ) / m ) ) ) |
| 35 |
34
|
oveq2d |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) = ( ( Lam ` m ) x. ( ( psi ` ( ( x / n ) / m ) ) - ( ( x / n ) / m ) ) ) ) |
| 36 |
|
vmacl |
|- ( m e. NN -> ( Lam ` m ) e. RR ) |
| 37 |
30 36
|
syl |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` m ) e. RR ) |
| 38 |
37
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` m ) e. CC ) |
| 39 |
3
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
| 40 |
39 25
|
nndivred |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) |
| 41 |
40
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( x / n ) e. RR ) |
| 42 |
41 30
|
nndivred |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x / n ) / m ) e. RR ) |
| 43 |
|
chpcl |
|- ( ( ( x / n ) / m ) e. RR -> ( psi ` ( ( x / n ) / m ) ) e. RR ) |
| 44 |
42 43
|
syl |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( psi ` ( ( x / n ) / m ) ) e. RR ) |
| 45 |
44
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( psi ` ( ( x / n ) / m ) ) e. CC ) |
| 46 |
42
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x / n ) / m ) e. CC ) |
| 47 |
38 45 46
|
subdid |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( psi ` ( ( x / n ) / m ) ) - ( ( x / n ) / m ) ) ) = ( ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) |
| 48 |
35 47
|
eqtrd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) = ( ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) |
| 49 |
48
|
sumeq2dv |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) |
| 50 |
|
fzfid |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) |
| 51 |
37 44
|
remulcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. RR ) |
| 52 |
51
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. CC ) |
| 53 |
38 46
|
mulcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( x / n ) / m ) ) e. CC ) |
| 54 |
50 52 53
|
fsumsub |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) |
| 55 |
49 54
|
eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) |
| 56 |
55
|
oveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) = ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) |
| 57 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
| 58 |
25 57
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
| 59 |
58
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) |
| 60 |
50 51
|
fsumrecl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. RR ) |
| 61 |
60
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. CC ) |
| 62 |
50 53
|
fsumcl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) e. CC ) |
| 63 |
59 61 62
|
subdid |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) - sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) = ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) |
| 64 |
56 63
|
eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) = ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) |
| 65 |
64
|
sumeq2dv |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) |
| 66 |
|
fzfid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 67 |
58 60
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) |
| 68 |
67
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. CC ) |
| 69 |
59 62
|
mulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) e. CC ) |
| 70 |
66 68 69
|
fsumsub |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) |
| 71 |
65 70
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) |
| 72 |
71
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) |
| 73 |
|
2re |
|- 2 e. RR |
| 74 |
73
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) |
| 75 |
3 9
|
rplogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) |
| 76 |
74 75
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. RR ) |
| 77 |
76
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. CC ) |
| 78 |
66 67
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) |
| 79 |
78
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. CC ) |
| 80 |
66 69
|
fsumcl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) e. CC ) |
| 81 |
77 79 80
|
subdid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) |
| 82 |
72 81
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) |
| 83 |
22 82
|
oveq12d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( R ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) ) |
| 84 |
16 19
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. RR ) |
| 85 |
84
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. CC ) |
| 86 |
18 20
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. CC ) |
| 87 |
76 78
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) e. RR ) |
| 88 |
87
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) e. CC ) |
| 89 |
77 80
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) e. CC ) |
| 90 |
85 86 88 89
|
sub4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) - ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) ) |
| 91 |
83 90
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( R ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) - ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) ) |
| 92 |
91
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( R ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) - ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) / x ) ) |
| 93 |
84 87
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) e. RR ) |
| 94 |
93
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) e. CC ) |
| 95 |
3 19
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR ) |
| 96 |
37 42
|
remulcld |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( x / n ) / m ) ) e. RR ) |
| 97 |
50 96
|
fsumrecl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) e. RR ) |
| 98 |
58 97
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) e. RR ) |
| 99 |
66 98
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) e. RR ) |
| 100 |
76 99
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) e. RR ) |
| 101 |
95 100
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) e. RR ) |
| 102 |
101
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) e. CC ) |
| 103 |
11
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) |
| 104 |
94 102 18 103
|
divsubdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) - ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) - ( ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) / x ) ) ) |
| 105 |
95
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. CC ) |
| 106 |
99
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) e. CC ) |
| 107 |
77 106
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) e. CC ) |
| 108 |
105 107 18 103
|
divsubdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) / x ) = ( ( ( x x. ( log ` x ) ) / x ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) / x ) ) ) |
| 109 |
20 18 103
|
divcan3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x x. ( log ` x ) ) / x ) = ( log ` x ) ) |
| 110 |
77 106 18 103
|
divassd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) / x ) = ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) ) ) |
| 111 |
98
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) e. CC ) |
| 112 |
66 18 111 103
|
fsumdivc |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) ) |
| 113 |
41
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( x / n ) e. CC ) |
| 114 |
30
|
nncnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. CC ) |
| 115 |
30
|
nnne0d |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m =/= 0 ) |
| 116 |
113 38 114 115
|
div12d |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x / n ) x. ( ( Lam ` m ) / m ) ) = ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) |
| 117 |
18
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) |
| 118 |
117
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> x e. CC ) |
| 119 |
25
|
nncnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
| 120 |
119
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> n e. CC ) |
| 121 |
37 30
|
nndivred |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) / m ) e. RR ) |
| 122 |
121
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) / m ) e. CC ) |
| 123 |
25
|
nnne0d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) |
| 124 |
123
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> n =/= 0 ) |
| 125 |
118 120 122 124
|
div32d |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x / n ) x. ( ( Lam ` m ) / m ) ) = ( x x. ( ( ( Lam ` m ) / m ) / n ) ) ) |
| 126 |
116 125
|
eqtr3d |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( x / n ) / m ) ) = ( x x. ( ( ( Lam ` m ) / m ) / n ) ) ) |
| 127 |
126
|
oveq1d |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) = ( ( x x. ( ( ( Lam ` m ) / m ) / n ) ) / x ) ) |
| 128 |
25
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> n e. NN ) |
| 129 |
121 128
|
nndivred |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( ( Lam ` m ) / m ) / n ) e. RR ) |
| 130 |
129
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( ( Lam ` m ) / m ) / n ) e. CC ) |
| 131 |
103
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x =/= 0 ) |
| 132 |
131
|
adantr |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> x =/= 0 ) |
| 133 |
130 118 132
|
divcan3d |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x x. ( ( ( Lam ` m ) / m ) / n ) ) / x ) = ( ( ( Lam ` m ) / m ) / n ) ) |
| 134 |
127 133
|
eqtrd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) = ( ( ( Lam ` m ) / m ) / n ) ) |
| 135 |
134
|
sumeq2dv |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) / m ) / n ) ) |
| 136 |
96
|
recnd |
|- ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( x / n ) / m ) ) e. CC ) |
| 137 |
50 117 136 131
|
fsumdivc |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) ) |
| 138 |
50 119 122 123
|
fsumdivc |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) / n ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) / m ) / n ) ) |
| 139 |
135 137 138
|
3eqtr4d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) / n ) ) |
| 140 |
139
|
oveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) ) = ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) / n ) ) ) |
| 141 |
97
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) e. CC ) |
| 142 |
59 141 117 131
|
divassd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) = ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) / x ) ) ) |
| 143 |
50 121
|
fsumrecl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) e. RR ) |
| 144 |
143
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) e. CC ) |
| 145 |
59 119 144 123
|
div32d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) = ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) / n ) ) ) |
| 146 |
140 142 145
|
3eqtr4d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) = ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) |
| 147 |
146
|
sumeq2dv |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) |
| 148 |
112 147
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) |
| 149 |
148
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) / x ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) ) |
| 150 |
110 149
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) / x ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) ) |
| 151 |
109 150
|
oveq12d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x x. ( log ` x ) ) / x ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) / x ) ) = ( ( log ` x ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) ) ) |
| 152 |
108 151
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) / x ) = ( ( log ` x ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) ) ) |
| 153 |
152
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) - ( ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) / x ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) - ( ( log ` x ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) ) ) ) |
| 154 |
94 18 103
|
divcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) e. CC ) |
| 155 |
58 25
|
nndivred |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) |
| 156 |
155 143
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) e. RR ) |
| 157 |
66 156
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) e. RR ) |
| 158 |
76 157
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) e. RR ) |
| 159 |
158
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) e. CC ) |
| 160 |
154 20 159
|
subsub2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) - ( ( log ` x ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) ) |
| 161 |
153 160
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) - ( ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) / x ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) ) |
| 162 |
104 161
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) - ( ( x x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( x / n ) / m ) ) ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) ) |
| 163 |
92 162
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( R ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) ) |
| 164 |
163
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( R ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) ) ) |
| 165 |
93 11
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) e. RR ) |
| 166 |
158 19
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) e. RR ) |
| 167 |
|
selberg4 |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) |
| 168 |
167
|
a1i |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) ) |
| 169 |
|
2cnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) |
| 170 |
157 75
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) e. RR ) |
| 171 |
170
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) e. CC ) |
| 172 |
19
|
rehalfcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. RR ) |
| 173 |
172
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. CC ) |
| 174 |
169 171 173
|
subdid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) ) - ( 2 x. ( ( log ` x ) / 2 ) ) ) ) |
| 175 |
157
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) e. CC ) |
| 176 |
75
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) |
| 177 |
169 20 175 176
|
div32d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) ) ) |
| 178 |
177
|
eqcomd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) ) |
| 179 |
|
2ne0 |
|- 2 =/= 0 |
| 180 |
179
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 =/= 0 ) |
| 181 |
20 169 180
|
divcan2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( ( log ` x ) / 2 ) ) = ( log ` x ) ) |
| 182 |
178 181
|
oveq12d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) ) - ( 2 x. ( ( log ` x ) / 2 ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) |
| 183 |
174 182
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) |
| 184 |
183
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) ) |
| 185 |
170 172
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) e. RR ) |
| 186 |
|
ioossre |
|- ( 1 (,) +oo ) C_ RR |
| 187 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
| 188 |
|
o1const |
|- ( ( ( 1 (,) +oo ) C_ RR /\ 2 e. CC ) -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) |
| 189 |
186 187 188
|
sylancr |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) |
| 190 |
|
2vmadivsum |
|- ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) |
| 191 |
190
|
a1i |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) ) |
| 192 |
74 185 189 191
|
o1mul2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) e. O(1) ) |
| 193 |
184 192
|
eqeltrrd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) e. O(1) ) |
| 194 |
165 166 168 193
|
o1add2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) / m ) ) ) - ( log ` x ) ) ) ) e. O(1) ) |
| 195 |
164 194
|
eqeltrd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( R ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) ) |
| 196 |
195
|
mptru |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( R ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( R ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) |