Step |
Hyp |
Ref |
Expression |
1 |
|
selberglem1.t |
|- T = ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) |
2 |
|
fzfid |
|- ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
3 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
4 |
3
|
adantl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
5 |
|
mucl |
|- ( n e. NN -> ( mmu ` n ) e. ZZ ) |
6 |
4 5
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) |
7 |
6
|
zred |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. RR ) |
8 |
7 4
|
nndivred |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. RR ) |
9 |
8
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. CC ) |
10 |
3
|
nnrpd |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) |
11 |
|
rpdivcl |
|- ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) |
12 |
10 11
|
sylan2 |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
13 |
|
relogcl |
|- ( ( x / n ) e. RR+ -> ( log ` ( x / n ) ) e. RR ) |
14 |
12 13
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) |
15 |
14
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. CC ) |
16 |
15
|
sqcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) ^ 2 ) e. CC ) |
17 |
9 16
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) e. CC ) |
18 |
2 17
|
fsumcl |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) e. CC ) |
19 |
|
2cn |
|- 2 e. CC |
20 |
19
|
a1i |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. CC ) |
21 |
20 15
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( log ` ( x / n ) ) ) e. CC ) |
22 |
20 21
|
subcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) e. CC ) |
23 |
9 22
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC ) |
24 |
2 23
|
fsumcl |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC ) |
25 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
26 |
25
|
recnd |
|- ( x e. RR+ -> ( log ` x ) e. CC ) |
27 |
|
mulcl |
|- ( ( 2 e. CC /\ ( log ` x ) e. CC ) -> ( 2 x. ( log ` x ) ) e. CC ) |
28 |
19 26 27
|
sylancr |
|- ( x e. RR+ -> ( 2 x. ( log ` x ) ) e. CC ) |
29 |
18 24 28
|
addsubd |
|- ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) - ( 2 x. ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
30 |
1
|
oveq2i |
|- ( ( mmu ` n ) x. T ) = ( ( mmu ` n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) ) |
31 |
6
|
zcnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. CC ) |
32 |
16 22
|
addcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC ) |
33 |
4
|
nnrpd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
34 |
33
|
rpcnne0d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n e. CC /\ n =/= 0 ) ) |
35 |
|
divass |
|- ( ( ( mmu ` n ) e. CC /\ ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( ( mmu ` n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) / n ) = ( ( mmu ` n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) ) ) |
36 |
|
div23 |
|- ( ( ( mmu ` n ) e. CC /\ ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( ( mmu ` n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) / n ) = ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
37 |
35 36
|
eqtr3d |
|- ( ( ( mmu ` n ) e. CC /\ ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( mmu ` n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) ) = ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
38 |
31 32 34 37
|
syl3anc |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) ) = ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
39 |
9 16 22
|
adddid |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) = ( ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
40 |
38 39
|
eqtrd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) ) = ( ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
41 |
30 40
|
syl5eq |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. T ) = ( ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
42 |
41
|
sumeq2dv |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
43 |
2 17 23
|
fsumadd |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
44 |
42 43
|
eqtrd |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
45 |
44
|
oveq1d |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) - ( 2 x. ( log ` x ) ) ) ) |
46 |
19
|
a1i |
|- ( x e. RR+ -> 2 e. CC ) |
47 |
9 15
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) |
48 |
9 47
|
subcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. CC ) |
49 |
2 46 48
|
fsummulc2 |
|- ( x e. RR+ -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) |
50 |
2 9 47
|
fsumsub |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) |
51 |
50
|
oveq2d |
|- ( x e. RR+ -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) |
52 |
20 9
|
mulcomd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( mmu ` n ) / n ) ) = ( ( ( mmu ` n ) / n ) x. 2 ) ) |
53 |
20 9 15
|
mul12d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( ( ( mmu ` n ) / n ) x. ( 2 x. ( log ` ( x / n ) ) ) ) ) |
54 |
52 53
|
oveq12d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. ( ( mmu ` n ) / n ) ) - ( 2 x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = ( ( ( ( mmu ` n ) / n ) x. 2 ) - ( ( ( mmu ` n ) / n ) x. ( 2 x. ( log ` ( x / n ) ) ) ) ) ) |
55 |
20 9 47
|
subdid |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = ( ( 2 x. ( ( mmu ` n ) / n ) ) - ( 2 x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) |
56 |
9 20 21
|
subdid |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) = ( ( ( ( mmu ` n ) / n ) x. 2 ) - ( ( ( mmu ` n ) / n ) x. ( 2 x. ( log ` ( x / n ) ) ) ) ) ) |
57 |
54 55 56
|
3eqtr4d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) |
58 |
57
|
sumeq2dv |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) |
59 |
49 51 58
|
3eqtr3d |
|- ( x e. RR+ -> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) |
60 |
59
|
oveq2d |
|- ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) + ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
61 |
29 45 60
|
3eqtr4d |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) + ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) ) |
62 |
61
|
mpteq2ia |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) + ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) ) |
63 |
|
ovexd |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) e. _V ) |
64 |
|
ovexd |
|- ( ( T. /\ x e. RR+ ) -> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) e. _V ) |
65 |
|
mulog2sum |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |
66 |
65
|
a1i |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
67 |
|
2ex |
|- 2 e. _V |
68 |
67
|
a1i |
|- ( ( T. /\ x e. RR+ ) -> 2 e. _V ) |
69 |
|
ovexd |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. _V ) |
70 |
|
rpssre |
|- RR+ C_ RR |
71 |
|
o1const |
|- ( ( RR+ C_ RR /\ 2 e. CC ) -> ( x e. RR+ |-> 2 ) e. O(1) ) |
72 |
70 19 71
|
mp2an |
|- ( x e. RR+ |-> 2 ) e. O(1) |
73 |
72
|
a1i |
|- ( T. -> ( x e. RR+ |-> 2 ) e. O(1) ) |
74 |
|
reex |
|- RR e. _V |
75 |
74 70
|
ssexi |
|- RR+ e. _V |
76 |
75
|
a1i |
|- ( T. -> RR+ e. _V ) |
77 |
|
sumex |
|- sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. _V |
78 |
77
|
a1i |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. _V ) |
79 |
|
sumex |
|- sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. _V |
80 |
79
|
a1i |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. _V ) |
81 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) = ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) ) |
82 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) |
83 |
76 78 80 81 82
|
offval2 |
|- ( T. -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) oF - ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) |
84 |
|
mudivsum |
|- ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. O(1) |
85 |
|
mulogsum |
|- ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. O(1) |
86 |
|
o1sub |
|- ( ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. O(1) /\ ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. O(1) ) -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) oF - ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) e. O(1) ) |
87 |
84 85 86
|
mp2an |
|- ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) oF - ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) e. O(1) |
88 |
83 87
|
eqeltrrdi |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) e. O(1) ) |
89 |
68 69 73 88
|
o1mul2 |
|- ( T. -> ( x e. RR+ |-> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) e. O(1) ) |
90 |
63 64 66 89
|
o1add2 |
|- ( T. -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) + ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) ) e. O(1) ) |
91 |
90
|
mptru |
|- ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) + ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) ) e. O(1) |
92 |
62 91
|
eqeltri |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |