| Step |
Hyp |
Ref |
Expression |
| 1 |
|
selberglem1.t |
|- T = ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) |
| 2 |
|
fzfid |
|- ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 3 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
| 4 |
3
|
adantl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 5 |
|
mucl |
|- ( n e. NN -> ( mmu ` n ) e. ZZ ) |
| 6 |
4 5
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) |
| 7 |
6
|
zred |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. RR ) |
| 8 |
7 4
|
nndivred |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. RR ) |
| 9 |
8
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. CC ) |
| 10 |
3
|
nnrpd |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) |
| 11 |
|
rpdivcl |
|- ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) |
| 12 |
10 11
|
sylan2 |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
| 13 |
|
relogcl |
|- ( ( x / n ) e. RR+ -> ( log ` ( x / n ) ) e. RR ) |
| 14 |
12 13
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) |
| 15 |
14
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. CC ) |
| 16 |
15
|
sqcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) ^ 2 ) e. CC ) |
| 17 |
9 16
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) e. CC ) |
| 18 |
2 17
|
fsumcl |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) e. CC ) |
| 19 |
|
2cn |
|- 2 e. CC |
| 20 |
19
|
a1i |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. CC ) |
| 21 |
20 15
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( log ` ( x / n ) ) ) e. CC ) |
| 22 |
20 21
|
subcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) e. CC ) |
| 23 |
9 22
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC ) |
| 24 |
2 23
|
fsumcl |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC ) |
| 25 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
| 26 |
25
|
recnd |
|- ( x e. RR+ -> ( log ` x ) e. CC ) |
| 27 |
|
mulcl |
|- ( ( 2 e. CC /\ ( log ` x ) e. CC ) -> ( 2 x. ( log ` x ) ) e. CC ) |
| 28 |
19 26 27
|
sylancr |
|- ( x e. RR+ -> ( 2 x. ( log ` x ) ) e. CC ) |
| 29 |
18 24 28
|
addsubd |
|- ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) - ( 2 x. ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 30 |
1
|
oveq2i |
|- ( ( mmu ` n ) x. T ) = ( ( mmu ` n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) ) |
| 31 |
6
|
zcnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. CC ) |
| 32 |
16 22
|
addcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC ) |
| 33 |
4
|
nnrpd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
| 34 |
33
|
rpcnne0d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n e. CC /\ n =/= 0 ) ) |
| 35 |
|
divass |
|- ( ( ( mmu ` n ) e. CC /\ ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( ( mmu ` n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) / n ) = ( ( mmu ` n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) ) ) |
| 36 |
|
div23 |
|- ( ( ( mmu ` n ) e. CC /\ ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( ( mmu ` n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) / n ) = ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 37 |
35 36
|
eqtr3d |
|- ( ( ( mmu ` n ) e. CC /\ ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( mmu ` n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) ) = ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 38 |
31 32 34 37
|
syl3anc |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) ) = ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 39 |
9 16 22
|
adddid |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) = ( ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 40 |
38 39
|
eqtrd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) ) = ( ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 41 |
30 40
|
eqtrid |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. T ) = ( ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 42 |
41
|
sumeq2dv |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 43 |
2 17 23
|
fsumadd |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 44 |
42 43
|
eqtrd |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 45 |
44
|
oveq1d |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) - ( 2 x. ( log ` x ) ) ) ) |
| 46 |
19
|
a1i |
|- ( x e. RR+ -> 2 e. CC ) |
| 47 |
9 15
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) |
| 48 |
9 47
|
subcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. CC ) |
| 49 |
2 46 48
|
fsummulc2 |
|- ( x e. RR+ -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) |
| 50 |
2 9 47
|
fsumsub |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) |
| 51 |
50
|
oveq2d |
|- ( x e. RR+ -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) |
| 52 |
20 9
|
mulcomd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( mmu ` n ) / n ) ) = ( ( ( mmu ` n ) / n ) x. 2 ) ) |
| 53 |
20 9 15
|
mul12d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( ( ( mmu ` n ) / n ) x. ( 2 x. ( log ` ( x / n ) ) ) ) ) |
| 54 |
52 53
|
oveq12d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. ( ( mmu ` n ) / n ) ) - ( 2 x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = ( ( ( ( mmu ` n ) / n ) x. 2 ) - ( ( ( mmu ` n ) / n ) x. ( 2 x. ( log ` ( x / n ) ) ) ) ) ) |
| 55 |
20 9 47
|
subdid |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = ( ( 2 x. ( ( mmu ` n ) / n ) ) - ( 2 x. ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) |
| 56 |
9 20 21
|
subdid |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) = ( ( ( ( mmu ` n ) / n ) x. 2 ) - ( ( ( mmu ` n ) / n ) x. ( 2 x. ( log ` ( x / n ) ) ) ) ) ) |
| 57 |
54 55 56
|
3eqtr4d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) |
| 58 |
57
|
sumeq2dv |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( ( mmu ` n ) / n ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) |
| 59 |
49 51 58
|
3eqtr3d |
|- ( x e. RR+ -> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) |
| 60 |
59
|
oveq2d |
|- ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) + ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 61 |
29 45 60
|
3eqtr4d |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) + ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 62 |
61
|
mpteq2ia |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) + ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 63 |
|
ovexd |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) e. _V ) |
| 64 |
|
ovexd |
|- ( ( T. /\ x e. RR+ ) -> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) e. _V ) |
| 65 |
|
mulog2sum |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |
| 66 |
65
|
a1i |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
| 67 |
|
2ex |
|- 2 e. _V |
| 68 |
67
|
a1i |
|- ( ( T. /\ x e. RR+ ) -> 2 e. _V ) |
| 69 |
|
ovexd |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. _V ) |
| 70 |
|
rpssre |
|- RR+ C_ RR |
| 71 |
|
o1const |
|- ( ( RR+ C_ RR /\ 2 e. CC ) -> ( x e. RR+ |-> 2 ) e. O(1) ) |
| 72 |
70 19 71
|
mp2an |
|- ( x e. RR+ |-> 2 ) e. O(1) |
| 73 |
72
|
a1i |
|- ( T. -> ( x e. RR+ |-> 2 ) e. O(1) ) |
| 74 |
|
reex |
|- RR e. _V |
| 75 |
74 70
|
ssexi |
|- RR+ e. _V |
| 76 |
75
|
a1i |
|- ( T. -> RR+ e. _V ) |
| 77 |
|
sumex |
|- sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. _V |
| 78 |
77
|
a1i |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. _V ) |
| 79 |
|
sumex |
|- sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. _V |
| 80 |
79
|
a1i |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. _V ) |
| 81 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) = ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) ) |
| 82 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) |
| 83 |
76 78 80 81 82
|
offval2 |
|- ( T. -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) oF - ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) |
| 84 |
|
mudivsum |
|- ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. O(1) |
| 85 |
|
mulogsum |
|- ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. O(1) |
| 86 |
|
o1sub |
|- ( ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. O(1) /\ ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. O(1) ) -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) oF - ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) e. O(1) ) |
| 87 |
84 85 86
|
mp2an |
|- ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) oF - ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) e. O(1) |
| 88 |
83 87
|
eqeltrrdi |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) e. O(1) ) |
| 89 |
68 69 73 88
|
o1mul2 |
|- ( T. -> ( x e. RR+ |-> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) e. O(1) ) |
| 90 |
63 64 66 89
|
o1add2 |
|- ( T. -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) + ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) ) e. O(1) ) |
| 91 |
90
|
mptru |
|- ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( ( log ` ( x / n ) ) ^ 2 ) ) - ( 2 x. ( log ` x ) ) ) + ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) ) ) e. O(1) |
| 92 |
62 91
|
eqeltri |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |