Step |
Hyp |
Ref |
Expression |
1 |
|
selberglem1.t |
|- T = ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) |
2 |
|
reex |
|- RR e. _V |
3 |
|
rpssre |
|- RR+ C_ RR |
4 |
2 3
|
ssexi |
|- RR+ e. _V |
5 |
4
|
a1i |
|- ( T. -> RR+ e. _V ) |
6 |
|
fzfid |
|- ( ( T. /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
7 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
8 |
7
|
adantl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
9 |
|
mucl |
|- ( n e. NN -> ( mmu ` n ) e. ZZ ) |
10 |
8 9
|
syl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) |
11 |
10
|
zred |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. RR ) |
12 |
11
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. CC ) |
13 |
|
fzfid |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) |
14 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) |
15 |
14
|
adantl |
|- ( ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) |
16 |
15
|
nnrpd |
|- ( ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. RR+ ) |
17 |
16
|
relogcld |
|- ( ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( log ` m ) e. RR ) |
18 |
17
|
resqcld |
|- ( ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( log ` m ) ^ 2 ) e. RR ) |
19 |
13 18
|
fsumrecl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) e. RR ) |
20 |
|
simplr |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) |
21 |
19 20
|
rerpdivcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) e. RR ) |
22 |
21
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) e. CC ) |
23 |
|
simpr |
|- ( ( T. /\ x e. RR+ ) -> x e. RR+ ) |
24 |
7
|
nnrpd |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) |
25 |
|
rpdivcl |
|- ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) |
26 |
23 24 25
|
syl2an |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
27 |
26
|
relogcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) |
28 |
27
|
resqcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) ^ 2 ) e. RR ) |
29 |
|
2re |
|- 2 e. RR |
30 |
|
remulcl |
|- ( ( 2 e. RR /\ ( log ` ( x / n ) ) e. RR ) -> ( 2 x. ( log ` ( x / n ) ) ) e. RR ) |
31 |
29 27 30
|
sylancr |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( log ` ( x / n ) ) ) e. RR ) |
32 |
|
resubcl |
|- ( ( 2 e. RR /\ ( 2 x. ( log ` ( x / n ) ) ) e. RR ) -> ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) e. RR ) |
33 |
29 31 32
|
sylancr |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) e. RR ) |
34 |
28 33
|
readdcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. RR ) |
35 |
34 8
|
nndivred |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) e. RR ) |
36 |
1 35
|
eqeltrid |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> T e. RR ) |
37 |
36
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> T e. CC ) |
38 |
22 37
|
subcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) e. CC ) |
39 |
12 38
|
mulcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) e. CC ) |
40 |
6 39
|
fsumcl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) e. CC ) |
41 |
12 37
|
mulcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. T ) e. CC ) |
42 |
6 41
|
fsumcl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) e. CC ) |
43 |
|
2cn |
|- 2 e. CC |
44 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
45 |
44
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
46 |
45
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
47 |
|
mulcl |
|- ( ( 2 e. CC /\ ( log ` x ) e. CC ) -> ( 2 x. ( log ` x ) ) e. CC ) |
48 |
43 46 47
|
sylancr |
|- ( ( T. /\ x e. RR+ ) -> ( 2 x. ( log ` x ) ) e. CC ) |
49 |
42 48
|
subcld |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) e. CC ) |
50 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) = ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) ) |
51 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) |
52 |
5 40 49 50 51
|
offval2 |
|- ( T. -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) oF + ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) ) |
53 |
40 42 48
|
addsubassd |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) ) - ( 2 x. ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) |
54 |
|
rpcnne0 |
|- ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) |
55 |
54
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( x e. CC /\ x =/= 0 ) ) |
56 |
55
|
simpld |
|- ( ( T. /\ x e. RR+ ) -> x e. CC ) |
57 |
11
|
adantr |
|- ( ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( mmu ` n ) e. RR ) |
58 |
57 18
|
remulcld |
|- ( ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) e. RR ) |
59 |
13 58
|
fsumrecl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) e. RR ) |
60 |
59
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) e. CC ) |
61 |
55
|
simprd |
|- ( ( T. /\ x e. RR+ ) -> x =/= 0 ) |
62 |
6 56 60 61
|
fsumdivc |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) ) |
63 |
18
|
recnd |
|- ( ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( log ` m ) ^ 2 ) e. CC ) |
64 |
13 63
|
fsumcl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) e. CC ) |
65 |
55
|
adantr |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x e. CC /\ x =/= 0 ) ) |
66 |
|
divass |
|- ( ( ( mmu ` n ) e. CC /\ sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( mmu ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) ) / x ) = ( ( mmu ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) ) |
67 |
12 64 65 66
|
syl3anc |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) ) / x ) = ( ( mmu ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) ) |
68 |
13 12 63
|
fsummulc2 |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) ) |
69 |
68
|
oveq1d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) ) / x ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) ) |
70 |
22 37
|
npcand |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) + T ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) |
71 |
70
|
oveq2d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. ( ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) + T ) ) = ( ( mmu ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) ) |
72 |
12 38 37
|
adddid |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. ( ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) + T ) ) = ( ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( ( mmu ` n ) x. T ) ) ) |
73 |
71 72
|
eqtr3d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) = ( ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( ( mmu ` n ) x. T ) ) ) |
74 |
67 69 73
|
3eqtr3d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) = ( ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( ( mmu ` n ) x. T ) ) ) |
75 |
74
|
sumeq2dv |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( ( mmu ` n ) x. T ) ) ) |
76 |
6 39 41
|
fsumadd |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( ( mmu ` n ) x. T ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) ) ) |
77 |
62 75 76
|
3eqtrrd |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) ) |
78 |
77
|
oveq1d |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) ) - ( 2 x. ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
79 |
53 78
|
eqtr3d |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
80 |
79
|
mpteq2dva |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) |
81 |
52 80
|
eqtrd |
|- ( T. -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) oF + ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) |
82 |
|
1red |
|- ( T. -> 1 e. RR ) |
83 |
6 28
|
fsumrecl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) e. RR ) |
84 |
83 23
|
rerpdivcld |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) e. RR ) |
85 |
84
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) e. CC ) |
86 |
|
2cnd |
|- ( ( T. /\ x e. RR+ ) -> 2 e. CC ) |
87 |
|
2nn0 |
|- 2 e. NN0 |
88 |
|
logexprlim |
|- ( 2 e. NN0 -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) ) ~~>r ( ! ` 2 ) ) |
89 |
87 88
|
mp1i |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) ) ~~>r ( ! ` 2 ) ) |
90 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
91 |
|
rlimconst |
|- ( ( RR+ C_ RR /\ 2 e. CC ) -> ( x e. RR+ |-> 2 ) ~~>r 2 ) |
92 |
3 90 91
|
sylancr |
|- ( T. -> ( x e. RR+ |-> 2 ) ~~>r 2 ) |
93 |
85 86 89 92
|
rlimadd |
|- ( T. -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) ~~>r ( ( ! ` 2 ) + 2 ) ) |
94 |
|
rlimo1 |
|- ( ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) ~~>r ( ( ! ` 2 ) + 2 ) -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) e. O(1) ) |
95 |
93 94
|
syl |
|- ( T. -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) e. O(1) ) |
96 |
|
readdcl |
|- ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) e. RR /\ 2 e. RR ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) e. RR ) |
97 |
84 29 96
|
sylancl |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) e. RR ) |
98 |
40
|
abscld |
|- ( ( T. /\ x e. RR+ ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) e. RR ) |
99 |
97
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) e. CC ) |
100 |
99
|
abscld |
|- ( ( T. /\ x e. RR+ ) -> ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) e. RR ) |
101 |
39
|
abscld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) e. RR ) |
102 |
6 101
|
fsumrecl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) e. RR ) |
103 |
6 39
|
fsumabs |
|- ( ( T. /\ x e. RR+ ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) ) |
104 |
|
readdcl |
|- ( ( ( ( log ` ( x / n ) ) ^ 2 ) e. RR /\ 2 e. RR ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) e. RR ) |
105 |
28 29 104
|
sylancl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) e. RR ) |
106 |
105 20
|
rerpdivcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) e. RR ) |
107 |
6 106
|
fsumrecl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) e. RR ) |
108 |
38
|
abscld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) e. RR ) |
109 |
12 38
|
absmuld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) = ( ( abs ` ( mmu ` n ) ) x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) ) |
110 |
12
|
abscld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( mmu ` n ) ) e. RR ) |
111 |
|
1red |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) |
112 |
38
|
absge0d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) |
113 |
|
mule1 |
|- ( n e. NN -> ( abs ` ( mmu ` n ) ) <_ 1 ) |
114 |
8 113
|
syl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( mmu ` n ) ) <_ 1 ) |
115 |
110 111 108 112 114
|
lemul1ad |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( mmu ` n ) ) x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( 1 x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) ) |
116 |
108
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) e. CC ) |
117 |
116
|
mulid2d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) = ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) |
118 |
115 117
|
breqtrd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( mmu ` n ) ) x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) |
119 |
109 118
|
eqbrtrd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) |
120 |
65
|
simpld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) |
121 |
120 38
|
absmuld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( x x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) = ( ( abs ` x ) x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) ) |
122 |
120 22 37
|
subdid |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) = ( ( x x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) - ( x x. T ) ) ) |
123 |
65
|
simprd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x =/= 0 ) |
124 |
64 120 123
|
divcan2d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) ) |
125 |
34
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC ) |
126 |
8
|
nnrpd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
127 |
|
rpcnne0 |
|- ( n e. RR+ -> ( n e. CC /\ n =/= 0 ) ) |
128 |
126 127
|
syl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n e. CC /\ n =/= 0 ) ) |
129 |
|
divass |
|- ( ( x e. CC /\ ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( x x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) / n ) = ( x x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) ) ) |
130 |
1
|
oveq2i |
|- ( x x. T ) = ( x x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) ) |
131 |
129 130
|
eqtr4di |
|- ( ( x e. CC /\ ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( x x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) / n ) = ( x x. T ) ) |
132 |
|
div23 |
|- ( ( x e. CC /\ ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( x x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) / n ) = ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
133 |
131 132
|
eqtr3d |
|- ( ( x e. CC /\ ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( x x. T ) = ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
134 |
120 125 128 133
|
syl3anc |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. T ) = ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
135 |
124 134
|
oveq12d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) - ( x x. T ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) - ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) ) |
136 |
122 135
|
eqtrd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) - ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) ) |
137 |
136
|
fveq2d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( x x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) = ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) - ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) ) ) |
138 |
|
rprege0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) |
139 |
|
absid |
|- ( ( x e. RR /\ 0 <_ x ) -> ( abs ` x ) = x ) |
140 |
20 138 139
|
3syl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` x ) = x ) |
141 |
140
|
oveq1d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` x ) x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) = ( x x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) ) |
142 |
121 137 141
|
3eqtr3d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) - ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) ) = ( x x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) ) |
143 |
8
|
nncnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
144 |
143
|
mulid2d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) = n ) |
145 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
146 |
145
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> x e. RR ) |
147 |
|
fznnfl |
|- ( x e. RR -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) |
148 |
146 147
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) |
149 |
148
|
simplbda |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n <_ x ) |
150 |
144 149
|
eqbrtrd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) <_ x ) |
151 |
20
|
rpred |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
152 |
111 151 126
|
lemuldivd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 x. n ) <_ x <-> 1 <_ ( x / n ) ) ) |
153 |
150 152
|
mpbid |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ ( x / n ) ) |
154 |
|
log2sumbnd |
|- ( ( ( x / n ) e. RR+ /\ 1 <_ ( x / n ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) - ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) ) <_ ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) ) |
155 |
26 153 154
|
syl2anc |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) - ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) ) <_ ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) ) |
156 |
142 155
|
eqbrtrrd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) ) |
157 |
108 105 20
|
lemuldiv2d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) <-> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) <_ ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) ) ) |
158 |
156 157
|
mpbid |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) <_ ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) ) |
159 |
101 108 106 119 158
|
letrd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) ) |
160 |
6 101 106 159
|
fsumle |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) ) |
161 |
6 105
|
fsumrecl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) e. RR ) |
162 |
|
remulcl |
|- ( ( x e. RR /\ 2 e. RR ) -> ( x x. 2 ) e. RR ) |
163 |
146 29 162
|
sylancl |
|- ( ( T. /\ x e. RR+ ) -> ( x x. 2 ) e. RR ) |
164 |
83 163
|
readdcld |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( x x. 2 ) ) e. RR ) |
165 |
28
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) ^ 2 ) e. CC ) |
166 |
|
2cnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. CC ) |
167 |
6 165 166
|
fsumadd |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + sum_ n e. ( 1 ... ( |_ ` x ) ) 2 ) ) |
168 |
|
fsumconst |
|- ( ( ( 1 ... ( |_ ` x ) ) e. Fin /\ 2 e. CC ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) 2 = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. 2 ) ) |
169 |
6 43 168
|
sylancl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) 2 = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. 2 ) ) |
170 |
138
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( x e. RR /\ 0 <_ x ) ) |
171 |
|
flge0nn0 |
|- ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) |
172 |
|
hashfz1 |
|- ( ( |_ ` x ) e. NN0 -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) |
173 |
170 171 172
|
3syl |
|- ( ( T. /\ x e. RR+ ) -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) |
174 |
173
|
oveq1d |
|- ( ( T. /\ x e. RR+ ) -> ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. 2 ) = ( ( |_ ` x ) x. 2 ) ) |
175 |
169 174
|
eqtrd |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) 2 = ( ( |_ ` x ) x. 2 ) ) |
176 |
175
|
oveq2d |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + sum_ n e. ( 1 ... ( |_ ` x ) ) 2 ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( ( |_ ` x ) x. 2 ) ) ) |
177 |
167 176
|
eqtrd |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( ( |_ ` x ) x. 2 ) ) ) |
178 |
|
reflcl |
|- ( x e. RR -> ( |_ ` x ) e. RR ) |
179 |
146 178
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( |_ ` x ) e. RR ) |
180 |
29
|
a1i |
|- ( ( T. /\ x e. RR+ ) -> 2 e. RR ) |
181 |
179 180
|
remulcld |
|- ( ( T. /\ x e. RR+ ) -> ( ( |_ ` x ) x. 2 ) e. RR ) |
182 |
|
flle |
|- ( x e. RR -> ( |_ ` x ) <_ x ) |
183 |
146 182
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( |_ ` x ) <_ x ) |
184 |
|
2pos |
|- 0 < 2 |
185 |
29 184
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
186 |
185
|
a1i |
|- ( ( T. /\ x e. RR+ ) -> ( 2 e. RR /\ 0 < 2 ) ) |
187 |
|
lemul1 |
|- ( ( ( |_ ` x ) e. RR /\ x e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( |_ ` x ) <_ x <-> ( ( |_ ` x ) x. 2 ) <_ ( x x. 2 ) ) ) |
188 |
179 146 186 187
|
syl3anc |
|- ( ( T. /\ x e. RR+ ) -> ( ( |_ ` x ) <_ x <-> ( ( |_ ` x ) x. 2 ) <_ ( x x. 2 ) ) ) |
189 |
183 188
|
mpbid |
|- ( ( T. /\ x e. RR+ ) -> ( ( |_ ` x ) x. 2 ) <_ ( x x. 2 ) ) |
190 |
181 163 83 189
|
leadd2dd |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( ( |_ ` x ) x. 2 ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( x x. 2 ) ) ) |
191 |
177 190
|
eqbrtrd |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( x x. 2 ) ) ) |
192 |
161 164 23 191
|
lediv1dd |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( x x. 2 ) ) / x ) ) |
193 |
105
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) e. CC ) |
194 |
6 56 193 61
|
fsumdivc |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) ) |
195 |
83
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) e. CC ) |
196 |
56 86
|
mulcld |
|- ( ( T. /\ x e. RR+ ) -> ( x x. 2 ) e. CC ) |
197 |
|
divdir |
|- ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) e. CC /\ ( x x. 2 ) e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( x x. 2 ) ) / x ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + ( ( x x. 2 ) / x ) ) ) |
198 |
195 196 55 197
|
syl3anc |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( x x. 2 ) ) / x ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + ( ( x x. 2 ) / x ) ) ) |
199 |
86 56 61
|
divcan3d |
|- ( ( T. /\ x e. RR+ ) -> ( ( x x. 2 ) / x ) = 2 ) |
200 |
199
|
oveq2d |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + ( ( x x. 2 ) / x ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) |
201 |
198 200
|
eqtrd |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( x x. 2 ) ) / x ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) |
202 |
192 194 201
|
3brtr3d |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) |
203 |
102 107 97 160 202
|
letrd |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) |
204 |
98 102 97 103 203
|
letrd |
|- ( ( T. /\ x e. RR+ ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) |
205 |
97
|
leabsd |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) <_ ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) ) |
206 |
98 97 100 204 205
|
letrd |
|- ( ( T. /\ x e. RR+ ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) ) |
207 |
206
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) ) |
208 |
82 95 97 40 207
|
o1le |
|- ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) e. O(1) ) |
209 |
1
|
selberglem1 |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |
210 |
|
o1add |
|- ( ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) e. O(1) /\ ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) oF + ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) e. O(1) ) |
211 |
208 209 210
|
sylancl |
|- ( T. -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) oF + ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) e. O(1) ) |
212 |
81 211
|
eqeltrrd |
|- ( T. -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
213 |
212
|
mptru |
|- ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |