| Step |
Hyp |
Ref |
Expression |
| 1 |
|
selberglem1.t |
|- T = ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) |
| 2 |
|
reex |
|- RR e. _V |
| 3 |
|
rpssre |
|- RR+ C_ RR |
| 4 |
2 3
|
ssexi |
|- RR+ e. _V |
| 5 |
4
|
a1i |
|- ( T. -> RR+ e. _V ) |
| 6 |
|
fzfid |
|- ( ( T. /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 7 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
| 8 |
7
|
adantl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 9 |
|
mucl |
|- ( n e. NN -> ( mmu ` n ) e. ZZ ) |
| 10 |
8 9
|
syl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) |
| 11 |
10
|
zred |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. RR ) |
| 12 |
11
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. CC ) |
| 13 |
|
fzfid |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) |
| 14 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) |
| 15 |
14
|
adantl |
|- ( ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) |
| 16 |
15
|
nnrpd |
|- ( ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. RR+ ) |
| 17 |
16
|
relogcld |
|- ( ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( log ` m ) e. RR ) |
| 18 |
17
|
resqcld |
|- ( ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( log ` m ) ^ 2 ) e. RR ) |
| 19 |
13 18
|
fsumrecl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) e. RR ) |
| 20 |
|
simplr |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) |
| 21 |
19 20
|
rerpdivcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) e. RR ) |
| 22 |
21
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) e. CC ) |
| 23 |
|
simpr |
|- ( ( T. /\ x e. RR+ ) -> x e. RR+ ) |
| 24 |
7
|
nnrpd |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) |
| 25 |
|
rpdivcl |
|- ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) |
| 26 |
23 24 25
|
syl2an |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
| 27 |
26
|
relogcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) |
| 28 |
27
|
resqcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) ^ 2 ) e. RR ) |
| 29 |
|
2re |
|- 2 e. RR |
| 30 |
|
remulcl |
|- ( ( 2 e. RR /\ ( log ` ( x / n ) ) e. RR ) -> ( 2 x. ( log ` ( x / n ) ) ) e. RR ) |
| 31 |
29 27 30
|
sylancr |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( log ` ( x / n ) ) ) e. RR ) |
| 32 |
|
resubcl |
|- ( ( 2 e. RR /\ ( 2 x. ( log ` ( x / n ) ) ) e. RR ) -> ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) e. RR ) |
| 33 |
29 31 32
|
sylancr |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) e. RR ) |
| 34 |
28 33
|
readdcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. RR ) |
| 35 |
34 8
|
nndivred |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) e. RR ) |
| 36 |
1 35
|
eqeltrid |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> T e. RR ) |
| 37 |
36
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> T e. CC ) |
| 38 |
22 37
|
subcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) e. CC ) |
| 39 |
12 38
|
mulcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) e. CC ) |
| 40 |
6 39
|
fsumcl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) e. CC ) |
| 41 |
12 37
|
mulcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. T ) e. CC ) |
| 42 |
6 41
|
fsumcl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) e. CC ) |
| 43 |
|
2cn |
|- 2 e. CC |
| 44 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
| 45 |
44
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
| 46 |
45
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
| 47 |
|
mulcl |
|- ( ( 2 e. CC /\ ( log ` x ) e. CC ) -> ( 2 x. ( log ` x ) ) e. CC ) |
| 48 |
43 46 47
|
sylancr |
|- ( ( T. /\ x e. RR+ ) -> ( 2 x. ( log ` x ) ) e. CC ) |
| 49 |
42 48
|
subcld |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) e. CC ) |
| 50 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) = ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) ) |
| 51 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) |
| 52 |
5 40 49 50 51
|
offval2 |
|- ( T. -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) oF + ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) ) |
| 53 |
40 42 48
|
addsubassd |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) ) - ( 2 x. ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) |
| 54 |
|
rpcnne0 |
|- ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) |
| 55 |
54
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( x e. CC /\ x =/= 0 ) ) |
| 56 |
55
|
simpld |
|- ( ( T. /\ x e. RR+ ) -> x e. CC ) |
| 57 |
11
|
adantr |
|- ( ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( mmu ` n ) e. RR ) |
| 58 |
57 18
|
remulcld |
|- ( ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) e. RR ) |
| 59 |
13 58
|
fsumrecl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) e. RR ) |
| 60 |
59
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) e. CC ) |
| 61 |
55
|
simprd |
|- ( ( T. /\ x e. RR+ ) -> x =/= 0 ) |
| 62 |
6 56 60 61
|
fsumdivc |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) ) |
| 63 |
18
|
recnd |
|- ( ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( log ` m ) ^ 2 ) e. CC ) |
| 64 |
13 63
|
fsumcl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) e. CC ) |
| 65 |
55
|
adantr |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x e. CC /\ x =/= 0 ) ) |
| 66 |
|
divass |
|- ( ( ( mmu ` n ) e. CC /\ sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( mmu ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) ) / x ) = ( ( mmu ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) ) |
| 67 |
12 64 65 66
|
syl3anc |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) ) / x ) = ( ( mmu ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) ) |
| 68 |
13 12 63
|
fsummulc2 |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) ) |
| 69 |
68
|
oveq1d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) ) / x ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) ) |
| 70 |
22 37
|
npcand |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) + T ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) |
| 71 |
70
|
oveq2d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. ( ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) + T ) ) = ( ( mmu ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) ) |
| 72 |
12 38 37
|
adddid |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. ( ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) + T ) ) = ( ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( ( mmu ` n ) x. T ) ) ) |
| 73 |
71 72
|
eqtr3d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) = ( ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( ( mmu ` n ) x. T ) ) ) |
| 74 |
67 69 73
|
3eqtr3d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) = ( ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( ( mmu ` n ) x. T ) ) ) |
| 75 |
74
|
sumeq2dv |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( ( mmu ` n ) x. T ) ) ) |
| 76 |
6 39 41
|
fsumadd |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( ( mmu ` n ) x. T ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) ) ) |
| 77 |
62 75 76
|
3eqtrrd |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) ) |
| 78 |
77
|
oveq1d |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) ) - ( 2 x. ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
| 79 |
53 78
|
eqtr3d |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
| 80 |
79
|
mpteq2dva |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) |
| 81 |
52 80
|
eqtrd |
|- ( T. -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) oF + ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) |
| 82 |
|
1red |
|- ( T. -> 1 e. RR ) |
| 83 |
6 28
|
fsumrecl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) e. RR ) |
| 84 |
83 23
|
rerpdivcld |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) e. RR ) |
| 85 |
84
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) e. CC ) |
| 86 |
|
2cnd |
|- ( ( T. /\ x e. RR+ ) -> 2 e. CC ) |
| 87 |
|
2nn0 |
|- 2 e. NN0 |
| 88 |
|
logexprlim |
|- ( 2 e. NN0 -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) ) ~~>r ( ! ` 2 ) ) |
| 89 |
87 88
|
mp1i |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) ) ~~>r ( ! ` 2 ) ) |
| 90 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
| 91 |
|
rlimconst |
|- ( ( RR+ C_ RR /\ 2 e. CC ) -> ( x e. RR+ |-> 2 ) ~~>r 2 ) |
| 92 |
3 90 91
|
sylancr |
|- ( T. -> ( x e. RR+ |-> 2 ) ~~>r 2 ) |
| 93 |
85 86 89 92
|
rlimadd |
|- ( T. -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) ~~>r ( ( ! ` 2 ) + 2 ) ) |
| 94 |
|
rlimo1 |
|- ( ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) ~~>r ( ( ! ` 2 ) + 2 ) -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) e. O(1) ) |
| 95 |
93 94
|
syl |
|- ( T. -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) e. O(1) ) |
| 96 |
|
readdcl |
|- ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) e. RR /\ 2 e. RR ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) e. RR ) |
| 97 |
84 29 96
|
sylancl |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) e. RR ) |
| 98 |
40
|
abscld |
|- ( ( T. /\ x e. RR+ ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) e. RR ) |
| 99 |
97
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) e. CC ) |
| 100 |
99
|
abscld |
|- ( ( T. /\ x e. RR+ ) -> ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) e. RR ) |
| 101 |
39
|
abscld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) e. RR ) |
| 102 |
6 101
|
fsumrecl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) e. RR ) |
| 103 |
6 39
|
fsumabs |
|- ( ( T. /\ x e. RR+ ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) ) |
| 104 |
|
readdcl |
|- ( ( ( ( log ` ( x / n ) ) ^ 2 ) e. RR /\ 2 e. RR ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) e. RR ) |
| 105 |
28 29 104
|
sylancl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) e. RR ) |
| 106 |
105 20
|
rerpdivcld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) e. RR ) |
| 107 |
6 106
|
fsumrecl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) e. RR ) |
| 108 |
38
|
abscld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) e. RR ) |
| 109 |
12 38
|
absmuld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) = ( ( abs ` ( mmu ` n ) ) x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) ) |
| 110 |
12
|
abscld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( mmu ` n ) ) e. RR ) |
| 111 |
|
1red |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) |
| 112 |
38
|
absge0d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) |
| 113 |
|
mule1 |
|- ( n e. NN -> ( abs ` ( mmu ` n ) ) <_ 1 ) |
| 114 |
8 113
|
syl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( mmu ` n ) ) <_ 1 ) |
| 115 |
110 111 108 112 114
|
lemul1ad |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( mmu ` n ) ) x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( 1 x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) ) |
| 116 |
108
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) e. CC ) |
| 117 |
116
|
mullidd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) = ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) |
| 118 |
115 117
|
breqtrd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( mmu ` n ) ) x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) |
| 119 |
109 118
|
eqbrtrd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) |
| 120 |
65
|
simpld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) |
| 121 |
120 38
|
absmuld |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( x x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) = ( ( abs ` x ) x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) ) |
| 122 |
120 22 37
|
subdid |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) = ( ( x x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) - ( x x. T ) ) ) |
| 123 |
65
|
simprd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x =/= 0 ) |
| 124 |
64 120 123
|
divcan2d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) ) |
| 125 |
34
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC ) |
| 126 |
8
|
nnrpd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
| 127 |
|
rpcnne0 |
|- ( n e. RR+ -> ( n e. CC /\ n =/= 0 ) ) |
| 128 |
126 127
|
syl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n e. CC /\ n =/= 0 ) ) |
| 129 |
|
divass |
|- ( ( x e. CC /\ ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( x x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) / n ) = ( x x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) ) ) |
| 130 |
1
|
oveq2i |
|- ( x x. T ) = ( x x. ( ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) / n ) ) |
| 131 |
129 130
|
eqtr4di |
|- ( ( x e. CC /\ ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( x x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) / n ) = ( x x. T ) ) |
| 132 |
|
div23 |
|- ( ( x e. CC /\ ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( x x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) / n ) = ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 133 |
131 132
|
eqtr3d |
|- ( ( x e. CC /\ ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( x x. T ) = ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 134 |
120 125 128 133
|
syl3anc |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. T ) = ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) |
| 135 |
124 134
|
oveq12d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) ) - ( x x. T ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) - ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) ) |
| 136 |
122 135
|
eqtrd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) - ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) ) |
| 137 |
136
|
fveq2d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( x x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) = ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) - ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) ) ) |
| 138 |
|
rprege0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) |
| 139 |
|
absid |
|- ( ( x e. RR /\ 0 <_ x ) -> ( abs ` x ) = x ) |
| 140 |
20 138 139
|
3syl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` x ) = x ) |
| 141 |
140
|
oveq1d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` x ) x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) = ( x x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) ) |
| 142 |
121 137 141
|
3eqtr3d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) - ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) ) = ( x x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) ) |
| 143 |
8
|
nncnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
| 144 |
143
|
mullidd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) = n ) |
| 145 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 146 |
145
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> x e. RR ) |
| 147 |
|
fznnfl |
|- ( x e. RR -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) |
| 148 |
146 147
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) |
| 149 |
148
|
simplbda |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n <_ x ) |
| 150 |
144 149
|
eqbrtrd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) <_ x ) |
| 151 |
20
|
rpred |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
| 152 |
111 151 126
|
lemuldivd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 x. n ) <_ x <-> 1 <_ ( x / n ) ) ) |
| 153 |
150 152
|
mpbid |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ ( x / n ) ) |
| 154 |
|
log2sumbnd |
|- ( ( ( x / n ) e. RR+ /\ 1 <_ ( x / n ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) - ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) ) <_ ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) ) |
| 155 |
26 153 154
|
syl2anc |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) - ( ( x / n ) x. ( ( ( log ` ( x / n ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / n ) ) ) ) ) ) ) ) <_ ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) ) |
| 156 |
142 155
|
eqbrtrrd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) ) |
| 157 |
108 105 20
|
lemuldiv2d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x x. ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) <-> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) <_ ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) ) ) |
| 158 |
156 157
|
mpbid |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) <_ ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) ) |
| 159 |
101 108 106 119 158
|
letrd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) ) |
| 160 |
6 101 106 159
|
fsumle |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) ) |
| 161 |
6 105
|
fsumrecl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) e. RR ) |
| 162 |
|
remulcl |
|- ( ( x e. RR /\ 2 e. RR ) -> ( x x. 2 ) e. RR ) |
| 163 |
146 29 162
|
sylancl |
|- ( ( T. /\ x e. RR+ ) -> ( x x. 2 ) e. RR ) |
| 164 |
83 163
|
readdcld |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( x x. 2 ) ) e. RR ) |
| 165 |
28
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) ^ 2 ) e. CC ) |
| 166 |
|
2cnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. CC ) |
| 167 |
6 165 166
|
fsumadd |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + sum_ n e. ( 1 ... ( |_ ` x ) ) 2 ) ) |
| 168 |
|
fsumconst |
|- ( ( ( 1 ... ( |_ ` x ) ) e. Fin /\ 2 e. CC ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) 2 = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. 2 ) ) |
| 169 |
6 43 168
|
sylancl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) 2 = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. 2 ) ) |
| 170 |
138
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( x e. RR /\ 0 <_ x ) ) |
| 171 |
|
flge0nn0 |
|- ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) |
| 172 |
|
hashfz1 |
|- ( ( |_ ` x ) e. NN0 -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) |
| 173 |
170 171 172
|
3syl |
|- ( ( T. /\ x e. RR+ ) -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) |
| 174 |
173
|
oveq1d |
|- ( ( T. /\ x e. RR+ ) -> ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. 2 ) = ( ( |_ ` x ) x. 2 ) ) |
| 175 |
169 174
|
eqtrd |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) 2 = ( ( |_ ` x ) x. 2 ) ) |
| 176 |
175
|
oveq2d |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + sum_ n e. ( 1 ... ( |_ ` x ) ) 2 ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( ( |_ ` x ) x. 2 ) ) ) |
| 177 |
167 176
|
eqtrd |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( ( |_ ` x ) x. 2 ) ) ) |
| 178 |
|
reflcl |
|- ( x e. RR -> ( |_ ` x ) e. RR ) |
| 179 |
146 178
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( |_ ` x ) e. RR ) |
| 180 |
29
|
a1i |
|- ( ( T. /\ x e. RR+ ) -> 2 e. RR ) |
| 181 |
179 180
|
remulcld |
|- ( ( T. /\ x e. RR+ ) -> ( ( |_ ` x ) x. 2 ) e. RR ) |
| 182 |
|
flle |
|- ( x e. RR -> ( |_ ` x ) <_ x ) |
| 183 |
146 182
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( |_ ` x ) <_ x ) |
| 184 |
|
2pos |
|- 0 < 2 |
| 185 |
29 184
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 186 |
185
|
a1i |
|- ( ( T. /\ x e. RR+ ) -> ( 2 e. RR /\ 0 < 2 ) ) |
| 187 |
|
lemul1 |
|- ( ( ( |_ ` x ) e. RR /\ x e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( |_ ` x ) <_ x <-> ( ( |_ ` x ) x. 2 ) <_ ( x x. 2 ) ) ) |
| 188 |
179 146 186 187
|
syl3anc |
|- ( ( T. /\ x e. RR+ ) -> ( ( |_ ` x ) <_ x <-> ( ( |_ ` x ) x. 2 ) <_ ( x x. 2 ) ) ) |
| 189 |
183 188
|
mpbid |
|- ( ( T. /\ x e. RR+ ) -> ( ( |_ ` x ) x. 2 ) <_ ( x x. 2 ) ) |
| 190 |
181 163 83 189
|
leadd2dd |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( ( |_ ` x ) x. 2 ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( x x. 2 ) ) ) |
| 191 |
177 190
|
eqbrtrd |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( x x. 2 ) ) ) |
| 192 |
161 164 23 191
|
lediv1dd |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( x x. 2 ) ) / x ) ) |
| 193 |
105
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) e. CC ) |
| 194 |
6 56 193 61
|
fsumdivc |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) ) |
| 195 |
83
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) e. CC ) |
| 196 |
56 86
|
mulcld |
|- ( ( T. /\ x e. RR+ ) -> ( x x. 2 ) e. CC ) |
| 197 |
|
divdir |
|- ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) e. CC /\ ( x x. 2 ) e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( x x. 2 ) ) / x ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + ( ( x x. 2 ) / x ) ) ) |
| 198 |
195 196 55 197
|
syl3anc |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( x x. 2 ) ) / x ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + ( ( x x. 2 ) / x ) ) ) |
| 199 |
86 56 61
|
divcan3d |
|- ( ( T. /\ x e. RR+ ) -> ( ( x x. 2 ) / x ) = 2 ) |
| 200 |
199
|
oveq2d |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + ( ( x x. 2 ) / x ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) |
| 201 |
198 200
|
eqtrd |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) + ( x x. 2 ) ) / x ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) |
| 202 |
192 194 201
|
3brtr3d |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( log ` ( x / n ) ) ^ 2 ) + 2 ) / x ) <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) |
| 203 |
102 107 97 160 202
|
letrd |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) |
| 204 |
98 102 97 103 203
|
letrd |
|- ( ( T. /\ x e. RR+ ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) |
| 205 |
97
|
leabsd |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) <_ ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) ) |
| 206 |
98 97 100 204 205
|
letrd |
|- ( ( T. /\ x e. RR+ ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) ) |
| 207 |
206
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) <_ ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 2 ) / x ) + 2 ) ) ) |
| 208 |
82 95 97 40 207
|
o1le |
|- ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) e. O(1) ) |
| 209 |
1
|
selberglem1 |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |
| 210 |
|
o1add |
|- ( ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) e. O(1) /\ ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) oF + ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) e. O(1) ) |
| 211 |
208 209 210
|
sylancl |
|- ( T. -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( log ` m ) ^ 2 ) / x ) - T ) ) ) oF + ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) x. T ) - ( 2 x. ( log ` x ) ) ) ) ) e. O(1) ) |
| 212 |
81 211
|
eqeltrrd |
|- ( T. -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
| 213 |
212
|
mptru |
|- ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |