| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntrval.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
| 2 |
|
reex |
|- RR e. _V |
| 3 |
|
rpssre |
|- RR+ C_ RR |
| 4 |
2 3
|
ssexi |
|- RR+ e. _V |
| 5 |
4
|
a1i |
|- ( T. -> RR+ e. _V ) |
| 6 |
|
ovexd |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) e. _V ) |
| 7 |
|
ovexd |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) e. _V ) |
| 8 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) |
| 9 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) = ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) |
| 10 |
5 6 7 8 9
|
offval2 |
|- ( T. -> ( ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) oF - ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) ) |
| 11 |
10
|
mptru |
|- ( ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) oF - ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) |
| 12 |
1
|
pntrf |
|- R : RR+ --> RR |
| 13 |
12
|
ffvelcdmi |
|- ( x e. RR+ -> ( R ` x ) e. RR ) |
| 14 |
13
|
recnd |
|- ( x e. RR+ -> ( R ` x ) e. CC ) |
| 15 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
| 16 |
15
|
recnd |
|- ( x e. RR+ -> ( log ` x ) e. CC ) |
| 17 |
14 16
|
mulcld |
|- ( x e. RR+ -> ( ( R ` x ) x. ( log ` x ) ) e. CC ) |
| 18 |
|
fzfid |
|- ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 19 |
|
elfznn |
|- ( d e. ( 1 ... ( |_ ` x ) ) -> d e. NN ) |
| 20 |
19
|
adantl |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> d e. NN ) |
| 21 |
|
vmacl |
|- ( d e. NN -> ( Lam ` d ) e. RR ) |
| 22 |
20 21
|
syl |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` d ) e. RR ) |
| 23 |
22
|
recnd |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` d ) e. CC ) |
| 24 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 25 |
|
nndivre |
|- ( ( x e. RR /\ d e. NN ) -> ( x / d ) e. RR ) |
| 26 |
24 19 25
|
syl2an |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x / d ) e. RR ) |
| 27 |
|
chpcl |
|- ( ( x / d ) e. RR -> ( psi ` ( x / d ) ) e. RR ) |
| 28 |
26 27
|
syl |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / d ) ) e. RR ) |
| 29 |
28
|
recnd |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / d ) ) e. CC ) |
| 30 |
23 29
|
mulcld |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) e. CC ) |
| 31 |
18 30
|
fsumcl |
|- ( x e. RR+ -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) e. CC ) |
| 32 |
17 31
|
addcld |
|- ( x e. RR+ -> ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) e. CC ) |
| 33 |
|
rpcn |
|- ( x e. RR+ -> x e. CC ) |
| 34 |
|
rpne0 |
|- ( x e. RR+ -> x =/= 0 ) |
| 35 |
32 33 34
|
divcld |
|- ( x e. RR+ -> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) e. CC ) |
| 36 |
22 20
|
nndivred |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) / d ) e. RR ) |
| 37 |
36
|
recnd |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) / d ) e. CC ) |
| 38 |
18 37
|
fsumcl |
|- ( x e. RR+ -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) e. CC ) |
| 39 |
35 38 16
|
nnncan2d |
|- ( x e. RR+ -> ( ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) - ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) = ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) |
| 40 |
|
chpcl |
|- ( x e. RR -> ( psi ` x ) e. RR ) |
| 41 |
24 40
|
syl |
|- ( x e. RR+ -> ( psi ` x ) e. RR ) |
| 42 |
41
|
recnd |
|- ( x e. RR+ -> ( psi ` x ) e. CC ) |
| 43 |
42 16
|
mulcld |
|- ( x e. RR+ -> ( ( psi ` x ) x. ( log ` x ) ) e. CC ) |
| 44 |
43 31
|
addcld |
|- ( x e. RR+ -> ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) e. CC ) |
| 45 |
44 33 34
|
divcld |
|- ( x e. RR+ -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) e. CC ) |
| 46 |
45 16 16
|
subsub4d |
|- ( x e. RR+ -> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) - ( log ` x ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( log ` x ) + ( log ` x ) ) ) ) |
| 47 |
1
|
pntrval |
|- ( x e. RR+ -> ( R ` x ) = ( ( psi ` x ) - x ) ) |
| 48 |
47
|
oveq1d |
|- ( x e. RR+ -> ( ( R ` x ) x. ( log ` x ) ) = ( ( ( psi ` x ) - x ) x. ( log ` x ) ) ) |
| 49 |
42 33 16
|
subdird |
|- ( x e. RR+ -> ( ( ( psi ` x ) - x ) x. ( log ` x ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) ) |
| 50 |
48 49
|
eqtrd |
|- ( x e. RR+ -> ( ( R ` x ) x. ( log ` x ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) ) |
| 51 |
50
|
oveq1d |
|- ( x e. RR+ -> ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) ) |
| 52 |
33 16
|
mulcld |
|- ( x e. RR+ -> ( x x. ( log ` x ) ) e. CC ) |
| 53 |
43 31 52
|
addsubd |
|- ( x e. RR+ -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. ( log ` x ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) ) |
| 54 |
51 53
|
eqtr4d |
|- ( x e. RR+ -> ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. ( log ` x ) ) ) ) |
| 55 |
54
|
oveq1d |
|- ( x e. RR+ -> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. ( log ` x ) ) ) / x ) ) |
| 56 |
|
rpcnne0 |
|- ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) |
| 57 |
|
divsubdir |
|- ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) e. CC /\ ( x x. ( log ` x ) ) e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. ( log ` x ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( x x. ( log ` x ) ) / x ) ) ) |
| 58 |
44 52 56 57
|
syl3anc |
|- ( x e. RR+ -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. ( log ` x ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( x x. ( log ` x ) ) / x ) ) ) |
| 59 |
16 33 34
|
divcan3d |
|- ( x e. RR+ -> ( ( x x. ( log ` x ) ) / x ) = ( log ` x ) ) |
| 60 |
59
|
oveq2d |
|- ( x e. RR+ -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( x x. ( log ` x ) ) / x ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) ) |
| 61 |
55 58 60
|
3eqtrd |
|- ( x e. RR+ -> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) ) |
| 62 |
61
|
oveq1d |
|- ( x e. RR+ -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) = ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) - ( log ` x ) ) ) |
| 63 |
16
|
2timesd |
|- ( x e. RR+ -> ( 2 x. ( log ` x ) ) = ( ( log ` x ) + ( log ` x ) ) ) |
| 64 |
63
|
oveq2d |
|- ( x e. RR+ -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( log ` x ) + ( log ` x ) ) ) ) |
| 65 |
46 62 64
|
3eqtr4d |
|- ( x e. RR+ -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
| 66 |
65
|
oveq1d |
|- ( x e. RR+ -> ( ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) - ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) = ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) |
| 67 |
33 38
|
mulcld |
|- ( x e. RR+ -> ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) e. CC ) |
| 68 |
|
divsubdir |
|- ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) e. CC /\ ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) / x ) = ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) / x ) ) ) |
| 69 |
32 67 56 68
|
syl3anc |
|- ( x e. RR+ -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) / x ) = ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) / x ) ) ) |
| 70 |
17 31 67
|
addsubassd |
|- ( x e. RR+ -> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) = ( ( ( R ` x ) x. ( log ` x ) ) + ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) ) ) |
| 71 |
33
|
adantr |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) |
| 72 |
71 37
|
mulcld |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( ( Lam ` d ) / d ) ) e. CC ) |
| 73 |
18 30 72
|
fsumsub |
|- ( x e. RR+ -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. ( ( Lam ` d ) / d ) ) ) = ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - sum_ d e. ( 1 ... ( |_ ` x ) ) ( x x. ( ( Lam ` d ) / d ) ) ) ) |
| 74 |
26
|
recnd |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x / d ) e. CC ) |
| 75 |
23 29 74
|
subdid |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) x. ( ( psi ` ( x / d ) ) - ( x / d ) ) ) = ( ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( ( Lam ` d ) x. ( x / d ) ) ) ) |
| 76 |
19
|
nnrpd |
|- ( d e. ( 1 ... ( |_ ` x ) ) -> d e. RR+ ) |
| 77 |
|
rpdivcl |
|- ( ( x e. RR+ /\ d e. RR+ ) -> ( x / d ) e. RR+ ) |
| 78 |
76 77
|
sylan2 |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x / d ) e. RR+ ) |
| 79 |
1
|
pntrval |
|- ( ( x / d ) e. RR+ -> ( R ` ( x / d ) ) = ( ( psi ` ( x / d ) ) - ( x / d ) ) ) |
| 80 |
78 79
|
syl |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / d ) ) = ( ( psi ` ( x / d ) ) - ( x / d ) ) ) |
| 81 |
80
|
oveq2d |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) = ( ( Lam ` d ) x. ( ( psi ` ( x / d ) ) - ( x / d ) ) ) ) |
| 82 |
20
|
nnrpd |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> d e. RR+ ) |
| 83 |
|
rpcnne0 |
|- ( d e. RR+ -> ( d e. CC /\ d =/= 0 ) ) |
| 84 |
82 83
|
syl |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( d e. CC /\ d =/= 0 ) ) |
| 85 |
|
div12 |
|- ( ( x e. CC /\ ( Lam ` d ) e. CC /\ ( d e. CC /\ d =/= 0 ) ) -> ( x x. ( ( Lam ` d ) / d ) ) = ( ( Lam ` d ) x. ( x / d ) ) ) |
| 86 |
71 23 84 85
|
syl3anc |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( ( Lam ` d ) / d ) ) = ( ( Lam ` d ) x. ( x / d ) ) ) |
| 87 |
86
|
oveq2d |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. ( ( Lam ` d ) / d ) ) ) = ( ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( ( Lam ` d ) x. ( x / d ) ) ) ) |
| 88 |
75 81 87
|
3eqtr4d |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) = ( ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. ( ( Lam ` d ) / d ) ) ) ) |
| 89 |
88
|
sumeq2dv |
|- ( x e. RR+ -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. ( ( Lam ` d ) / d ) ) ) ) |
| 90 |
18 33 37
|
fsummulc2 |
|- ( x e. RR+ -> ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( x x. ( ( Lam ` d ) / d ) ) ) |
| 91 |
90
|
oveq2d |
|- ( x e. RR+ -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) = ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - sum_ d e. ( 1 ... ( |_ ` x ) ) ( x x. ( ( Lam ` d ) / d ) ) ) ) |
| 92 |
73 89 91
|
3eqtr4rd |
|- ( x e. RR+ -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) |
| 93 |
92
|
oveq2d |
|- ( x e. RR+ -> ( ( ( R ` x ) x. ( log ` x ) ) + ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) ) = ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) ) |
| 94 |
70 93
|
eqtrd |
|- ( x e. RR+ -> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) = ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) ) |
| 95 |
94
|
oveq1d |
|- ( x e. RR+ -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) / x ) = ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) / x ) ) |
| 96 |
38 33 34
|
divcan3d |
|- ( x e. RR+ -> ( ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) / x ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) |
| 97 |
96
|
oveq2d |
|- ( x e. RR+ -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) / x ) ) = ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) |
| 98 |
69 95 97
|
3eqtr3rd |
|- ( x e. RR+ -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) = ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) / x ) ) |
| 99 |
39 66 98
|
3eqtr3d |
|- ( x e. RR+ -> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) = ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) / x ) ) |
| 100 |
99
|
mpteq2ia |
|- ( x e. RR+ |-> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) / x ) ) |
| 101 |
11 100
|
eqtri |
|- ( ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) oF - ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) / x ) ) |
| 102 |
|
selberg2 |
|- ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |
| 103 |
|
vmadivsum |
|- ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) e. O(1) |
| 104 |
|
o1sub |
|- ( ( ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) /\ ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) e. O(1) ) -> ( ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) oF - ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) e. O(1) ) |
| 105 |
102 103 104
|
mp2an |
|- ( ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) oF - ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) e. O(1) |
| 106 |
101 105
|
eqeltrri |
|- ( x e. RR+ |-> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) / x ) ) e. O(1) |