| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntsval.1 |
|- S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) |
| 2 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 3 |
1
|
pntsval |
|- ( x e. RR -> ( S ` x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) ) |
| 4 |
2 3
|
syl |
|- ( x e. RR+ -> ( S ` x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) ) |
| 5 |
4
|
oveq1d |
|- ( x e. RR+ -> ( ( S ` x ) / x ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) ) |
| 6 |
5
|
oveq1d |
|- ( x e. RR+ -> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
| 7 |
6
|
mpteq2ia |
|- ( x e. RR+ |-> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
| 8 |
|
selberg |
|- ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( x / n ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |
| 9 |
7 8
|
eqeltri |
|- ( x e. RR+ |-> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |