Description: An inference for selecting one of a list of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | selconj.1 | |- ( ph <-> ( ps /\ ch ) ) |
|
| Assertion | selconj | |- ( ( et /\ ph ) <-> ( ps /\ ( et /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | selconj.1 | |- ( ph <-> ( ps /\ ch ) ) |
|
| 2 | 1 | anbi2i | |- ( ( et /\ ph ) <-> ( et /\ ( ps /\ ch ) ) ) |
| 3 | an12 | |- ( ( ps /\ ( et /\ ch ) ) <-> ( et /\ ( ps /\ ch ) ) ) |
|
| 4 | 2 3 | bitr4i | |- ( ( et /\ ph ) <-> ( ps /\ ( et /\ ch ) ) ) |