Description: If a class is a set, then it is a member of a set. (Contributed by BJ, 3-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | sels | |- ( A e. V -> E. x A e. x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg | |- ( A e. V -> A e. { A } ) |
|
2 | snex | |- { A } e. _V |
|
3 | eleq2 | |- ( x = { A } -> ( A e. x <-> A e. { A } ) ) |
|
4 | 2 3 | spcev | |- ( A e. { A } -> E. x A e. x ) |
5 | 1 4 | syl | |- ( A e. V -> E. x A e. x ) |