Description: Alternate proof of sels , requiring ax-sep but not using el (which is proved from it as elALT ). (especially when the proof of el is inlined in sels ). (Contributed by NM, 4-Jan-2002) Generalize from the proof of elALT . (Revised by BJ, 3-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | selsALT | |- ( A e. V -> E. x A e. x ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snidg |  |-  ( A e. V -> A e. { A } ) | |
| 2 | snexg |  |-  ( A e. { A } -> { A } e. _V ) | |
| 3 | snidg |  |-  ( A e. { A } -> A e. { A } ) | |
| 4 | eleq2 |  |-  ( x = { A } -> ( A e. x <-> A e. { A } ) ) | |
| 5 | 2 3 4 | spcedv |  |-  ( A e. { A } -> E. x A e. x ) | 
| 6 | 1 5 | syl | |- ( A e. V -> E. x A e. x ) |