Metamath Proof Explorer


Theorem seq1i

Description: Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypotheses seq1i.1
|- M e. ZZ
seq1i.2
|- ( ph -> ( F ` M ) = A )
Assertion seq1i
|- ( ph -> ( seq M ( .+ , F ) ` M ) = A )

Proof

Step Hyp Ref Expression
1 seq1i.1
 |-  M e. ZZ
2 seq1i.2
 |-  ( ph -> ( F ` M ) = A )
3 seq1
 |-  ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) )
4 1 3 ax-mp
 |-  ( seq M ( .+ , F ) ` M ) = ( F ` M )
5 4 2 eqtrid
 |-  ( ph -> ( seq M ( .+ , F ) ` M ) = A )