| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqsplit.1 |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) | 
						
							| 2 |  | seqsplit.2 |  |-  ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) | 
						
							| 3 |  | seqsplit.3 |  |-  ( ph -> N e. ( ZZ>= ` ( M + 1 ) ) ) | 
						
							| 4 |  | seq1p.4 |  |-  ( ph -> M e. ZZ ) | 
						
							| 5 |  | seq1p.5 |  |-  ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) | 
						
							| 6 |  | uzid |  |-  ( M e. ZZ -> M e. ( ZZ>= ` M ) ) | 
						
							| 7 | 4 6 | syl |  |-  ( ph -> M e. ( ZZ>= ` M ) ) | 
						
							| 8 | 1 2 3 7 5 | seqsplit |  |-  ( ph -> ( seq M ( .+ , F ) ` N ) = ( ( seq M ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) | 
						
							| 9 |  | seq1 |  |-  ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) | 
						
							| 11 | 10 | oveq1d |  |-  ( ph -> ( ( seq M ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) = ( ( F ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) | 
						
							| 12 | 8 11 | eqtrd |  |-  ( ph -> ( seq M ( .+ , F ) ` N ) = ( ( F ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) |