| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqsplit.1 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 2 |
|
seqsplit.2 |
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 3 |
|
seqsplit.3 |
|- ( ph -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
| 4 |
|
seq1p.4 |
|- ( ph -> M e. ZZ ) |
| 5 |
|
seq1p.5 |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
| 6 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
| 7 |
4 6
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
| 8 |
1 2 3 7 5
|
seqsplit |
|- ( ph -> ( seq M ( .+ , F ) ` N ) = ( ( seq M ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) |
| 9 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
| 10 |
4 9
|
syl |
|- ( ph -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
| 11 |
10
|
oveq1d |
|- ( ph -> ( ( seq M ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) = ( ( F ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) |
| 12 |
8 11
|
eqtrd |
|- ( ph -> ( seq M ( .+ , F ) ` N ) = ( ( F ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) |