| Step |
Hyp |
Ref |
Expression |
| 1 |
|
algrf.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
algrf.2 |
|- R = seq M ( ( F o. 1st ) , ( Z X. { A } ) ) |
| 3 |
|
seqfn |
|- ( M e. ZZ -> seq M ( ( F o. 1st ) , ( Z X. { A } ) ) Fn ( ZZ>= ` M ) ) |
| 4 |
3
|
adantr |
|- ( ( M e. ZZ /\ A e. V ) -> seq M ( ( F o. 1st ) , ( Z X. { A } ) ) Fn ( ZZ>= ` M ) ) |
| 5 |
|
seqfn |
|- ( M e. ZZ -> seq M ( ( F o. 1st ) , { <. M , A >. } ) Fn ( ZZ>= ` M ) ) |
| 6 |
5
|
adantr |
|- ( ( M e. ZZ /\ A e. V ) -> seq M ( ( F o. 1st ) , { <. M , A >. } ) Fn ( ZZ>= ` M ) ) |
| 7 |
|
fveq2 |
|- ( y = M -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) ) |
| 8 |
|
fveq2 |
|- ( y = M -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) ) |
| 9 |
7 8
|
eqeq12d |
|- ( y = M -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) <-> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) ) ) |
| 10 |
9
|
imbi2d |
|- ( y = M -> ( ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) ) <-> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) ) ) ) |
| 11 |
|
fveq2 |
|- ( y = x -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) |
| 12 |
|
fveq2 |
|- ( y = x -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) |
| 13 |
11 12
|
eqeq12d |
|- ( y = x -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) <-> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) |
| 14 |
13
|
imbi2d |
|- ( y = x -> ( ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) ) <-> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) ) |
| 15 |
|
fveq2 |
|- ( y = ( x + 1 ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) ) |
| 16 |
|
fveq2 |
|- ( y = ( x + 1 ) -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) |
| 17 |
15 16
|
eqeq12d |
|- ( y = ( x + 1 ) -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) <-> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) ) |
| 18 |
17
|
imbi2d |
|- ( y = ( x + 1 ) -> ( ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) ) <-> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) ) ) |
| 19 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( ( Z X. { A } ) ` M ) ) |
| 20 |
19
|
adantr |
|- ( ( M e. ZZ /\ A e. V ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( ( Z X. { A } ) ` M ) ) |
| 21 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) = ( { <. M , A >. } ` M ) ) |
| 22 |
21
|
adantr |
|- ( ( M e. ZZ /\ A e. V ) -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) = ( { <. M , A >. } ` M ) ) |
| 23 |
|
id |
|- ( A e. V -> A e. V ) |
| 24 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
| 25 |
24 1
|
eleqtrrdi |
|- ( M e. ZZ -> M e. Z ) |
| 26 |
|
fvconst2g |
|- ( ( A e. V /\ M e. Z ) -> ( ( Z X. { A } ) ` M ) = A ) |
| 27 |
23 25 26
|
syl2anr |
|- ( ( M e. ZZ /\ A e. V ) -> ( ( Z X. { A } ) ` M ) = A ) |
| 28 |
|
fvsng |
|- ( ( M e. ZZ /\ A e. V ) -> ( { <. M , A >. } ` M ) = A ) |
| 29 |
27 28
|
eqtr4d |
|- ( ( M e. ZZ /\ A e. V ) -> ( ( Z X. { A } ) ` M ) = ( { <. M , A >. } ` M ) ) |
| 30 |
22 29
|
eqtr4d |
|- ( ( M e. ZZ /\ A e. V ) -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) = ( ( Z X. { A } ) ` M ) ) |
| 31 |
20 30
|
eqtr4d |
|- ( ( M e. ZZ /\ A e. V ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) ) |
| 32 |
31
|
ex |
|- ( M e. ZZ -> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) ) ) |
| 33 |
|
fveq2 |
|- ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) -> ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) = ( F ` ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) |
| 34 |
|
seqp1 |
|- ( x e. ( ZZ>= ` M ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ( F o. 1st ) ( ( Z X. { A } ) ` ( x + 1 ) ) ) ) |
| 35 |
|
fvex |
|- ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) e. _V |
| 36 |
|
fvex |
|- ( ( Z X. { A } ) ` ( x + 1 ) ) e. _V |
| 37 |
35 36
|
opco1i |
|- ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ( F o. 1st ) ( ( Z X. { A } ) ` ( x + 1 ) ) ) = ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) |
| 38 |
34 37
|
eqtrdi |
|- ( x e. ( ZZ>= ` M ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) ) |
| 39 |
|
seqp1 |
|- ( x e. ( ZZ>= ` M ) -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) = ( ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ( F o. 1st ) ( { <. M , A >. } ` ( x + 1 ) ) ) ) |
| 40 |
|
fvex |
|- ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) e. _V |
| 41 |
|
fvex |
|- ( { <. M , A >. } ` ( x + 1 ) ) e. _V |
| 42 |
40 41
|
opco1i |
|- ( ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ( F o. 1st ) ( { <. M , A >. } ` ( x + 1 ) ) ) = ( F ` ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) |
| 43 |
39 42
|
eqtrdi |
|- ( x e. ( ZZ>= ` M ) -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) = ( F ` ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) |
| 44 |
38 43
|
eqeq12d |
|- ( x e. ( ZZ>= ` M ) -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) <-> ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) = ( F ` ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) ) |
| 45 |
44
|
adantl |
|- ( ( A e. V /\ x e. ( ZZ>= ` M ) ) -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) <-> ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) = ( F ` ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) ) |
| 46 |
33 45
|
imbitrrid |
|- ( ( A e. V /\ x e. ( ZZ>= ` M ) ) -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) ) |
| 47 |
46
|
expcom |
|- ( x e. ( ZZ>= ` M ) -> ( A e. V -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) ) ) |
| 48 |
47
|
a2d |
|- ( x e. ( ZZ>= ` M ) -> ( ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) -> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) ) ) |
| 49 |
10 14 18 14 32 48
|
uzind4 |
|- ( x e. ( ZZ>= ` M ) -> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) |
| 50 |
49
|
impcom |
|- ( ( A e. V /\ x e. ( ZZ>= ` M ) ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) |
| 51 |
50
|
adantll |
|- ( ( ( M e. ZZ /\ A e. V ) /\ x e. ( ZZ>= ` M ) ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) |
| 52 |
4 6 51
|
eqfnfvd |
|- ( ( M e. ZZ /\ A e. V ) -> seq M ( ( F o. 1st ) , ( Z X. { A } ) ) = seq M ( ( F o. 1st ) , { <. M , A >. } ) ) |
| 53 |
2 52
|
eqtrid |
|- ( ( M e. ZZ /\ A e. V ) -> R = seq M ( ( F o. 1st ) , { <. M , A >. } ) ) |