Step |
Hyp |
Ref |
Expression |
1 |
|
algrf.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
algrf.2 |
|- R = seq M ( ( F o. 1st ) , ( Z X. { A } ) ) |
3 |
|
seqfn |
|- ( M e. ZZ -> seq M ( ( F o. 1st ) , ( Z X. { A } ) ) Fn ( ZZ>= ` M ) ) |
4 |
3
|
adantr |
|- ( ( M e. ZZ /\ A e. V ) -> seq M ( ( F o. 1st ) , ( Z X. { A } ) ) Fn ( ZZ>= ` M ) ) |
5 |
|
seqfn |
|- ( M e. ZZ -> seq M ( ( F o. 1st ) , { <. M , A >. } ) Fn ( ZZ>= ` M ) ) |
6 |
5
|
adantr |
|- ( ( M e. ZZ /\ A e. V ) -> seq M ( ( F o. 1st ) , { <. M , A >. } ) Fn ( ZZ>= ` M ) ) |
7 |
|
fveq2 |
|- ( y = M -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) ) |
8 |
|
fveq2 |
|- ( y = M -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) ) |
9 |
7 8
|
eqeq12d |
|- ( y = M -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) <-> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) ) ) |
10 |
9
|
imbi2d |
|- ( y = M -> ( ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) ) <-> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) ) ) ) |
11 |
|
fveq2 |
|- ( y = x -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) |
12 |
|
fveq2 |
|- ( y = x -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) |
13 |
11 12
|
eqeq12d |
|- ( y = x -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) <-> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) |
14 |
13
|
imbi2d |
|- ( y = x -> ( ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) ) <-> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) ) |
15 |
|
fveq2 |
|- ( y = ( x + 1 ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) ) |
16 |
|
fveq2 |
|- ( y = ( x + 1 ) -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) |
17 |
15 16
|
eqeq12d |
|- ( y = ( x + 1 ) -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) <-> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) ) |
18 |
17
|
imbi2d |
|- ( y = ( x + 1 ) -> ( ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) ) <-> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) ) ) |
19 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( ( Z X. { A } ) ` M ) ) |
20 |
19
|
adantr |
|- ( ( M e. ZZ /\ A e. V ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( ( Z X. { A } ) ` M ) ) |
21 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) = ( { <. M , A >. } ` M ) ) |
22 |
21
|
adantr |
|- ( ( M e. ZZ /\ A e. V ) -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) = ( { <. M , A >. } ` M ) ) |
23 |
|
id |
|- ( A e. V -> A e. V ) |
24 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
25 |
24 1
|
eleqtrrdi |
|- ( M e. ZZ -> M e. Z ) |
26 |
|
fvconst2g |
|- ( ( A e. V /\ M e. Z ) -> ( ( Z X. { A } ) ` M ) = A ) |
27 |
23 25 26
|
syl2anr |
|- ( ( M e. ZZ /\ A e. V ) -> ( ( Z X. { A } ) ` M ) = A ) |
28 |
|
fvsng |
|- ( ( M e. ZZ /\ A e. V ) -> ( { <. M , A >. } ` M ) = A ) |
29 |
27 28
|
eqtr4d |
|- ( ( M e. ZZ /\ A e. V ) -> ( ( Z X. { A } ) ` M ) = ( { <. M , A >. } ` M ) ) |
30 |
22 29
|
eqtr4d |
|- ( ( M e. ZZ /\ A e. V ) -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) = ( ( Z X. { A } ) ` M ) ) |
31 |
20 30
|
eqtr4d |
|- ( ( M e. ZZ /\ A e. V ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) ) |
32 |
31
|
ex |
|- ( M e. ZZ -> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) ) ) |
33 |
|
fveq2 |
|- ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) -> ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) = ( F ` ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) |
34 |
|
seqp1 |
|- ( x e. ( ZZ>= ` M ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ( F o. 1st ) ( ( Z X. { A } ) ` ( x + 1 ) ) ) ) |
35 |
|
fvex |
|- ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) e. _V |
36 |
|
fvex |
|- ( ( Z X. { A } ) ` ( x + 1 ) ) e. _V |
37 |
35 36
|
opco1i |
|- ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ( F o. 1st ) ( ( Z X. { A } ) ` ( x + 1 ) ) ) = ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) |
38 |
34 37
|
eqtrdi |
|- ( x e. ( ZZ>= ` M ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) ) |
39 |
|
seqp1 |
|- ( x e. ( ZZ>= ` M ) -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) = ( ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ( F o. 1st ) ( { <. M , A >. } ` ( x + 1 ) ) ) ) |
40 |
|
fvex |
|- ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) e. _V |
41 |
|
fvex |
|- ( { <. M , A >. } ` ( x + 1 ) ) e. _V |
42 |
40 41
|
opco1i |
|- ( ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ( F o. 1st ) ( { <. M , A >. } ` ( x + 1 ) ) ) = ( F ` ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) |
43 |
39 42
|
eqtrdi |
|- ( x e. ( ZZ>= ` M ) -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) = ( F ` ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) |
44 |
38 43
|
eqeq12d |
|- ( x e. ( ZZ>= ` M ) -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) <-> ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) = ( F ` ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) ) |
45 |
44
|
adantl |
|- ( ( A e. V /\ x e. ( ZZ>= ` M ) ) -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) <-> ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) = ( F ` ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) ) |
46 |
33 45
|
syl5ibr |
|- ( ( A e. V /\ x e. ( ZZ>= ` M ) ) -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) ) |
47 |
46
|
expcom |
|- ( x e. ( ZZ>= ` M ) -> ( A e. V -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) ) ) |
48 |
47
|
a2d |
|- ( x e. ( ZZ>= ` M ) -> ( ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) -> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) ) ) |
49 |
10 14 18 14 32 48
|
uzind4 |
|- ( x e. ( ZZ>= ` M ) -> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) |
50 |
49
|
impcom |
|- ( ( A e. V /\ x e. ( ZZ>= ` M ) ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) |
51 |
50
|
adantll |
|- ( ( ( M e. ZZ /\ A e. V ) /\ x e. ( ZZ>= ` M ) ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) |
52 |
4 6 51
|
eqfnfvd |
|- ( ( M e. ZZ /\ A e. V ) -> seq M ( ( F o. 1st ) , ( Z X. { A } ) ) = seq M ( ( F o. 1st ) , { <. M , A >. } ) ) |
53 |
2 52
|
eqtrid |
|- ( ( M e. ZZ /\ A e. V ) -> R = seq M ( ( F o. 1st ) , { <. M , A >. } ) ) |