| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqabs.1 |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 2 |  | seqabs.2 |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) | 
						
							| 3 |  | seqabs.3 |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) | 
						
							| 4 |  | fzfid |  |-  ( ph -> ( M ... N ) e. Fin ) | 
						
							| 5 | 4 2 | fsumabs |  |-  ( ph -> ( abs ` sum_ k e. ( M ... N ) ( F ` k ) ) <_ sum_ k e. ( M ... N ) ( abs ` ( F ` k ) ) ) | 
						
							| 6 |  | eqidd |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) = ( F ` k ) ) | 
						
							| 7 | 6 1 2 | fsumser |  |-  ( ph -> sum_ k e. ( M ... N ) ( F ` k ) = ( seq M ( + , F ) ` N ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( ph -> ( abs ` sum_ k e. ( M ... N ) ( F ` k ) ) = ( abs ` ( seq M ( + , F ) ` N ) ) ) | 
						
							| 9 |  | abscl |  |-  ( ( F ` k ) e. CC -> ( abs ` ( F ` k ) ) e. RR ) | 
						
							| 10 | 9 | recnd |  |-  ( ( F ` k ) e. CC -> ( abs ` ( F ` k ) ) e. CC ) | 
						
							| 11 | 2 10 | syl |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( abs ` ( F ` k ) ) e. CC ) | 
						
							| 12 | 3 1 11 | fsumser |  |-  ( ph -> sum_ k e. ( M ... N ) ( abs ` ( F ` k ) ) = ( seq M ( + , G ) ` N ) ) | 
						
							| 13 | 5 8 12 | 3brtr3d |  |-  ( ph -> ( abs ` ( seq M ( + , F ) ` N ) ) <_ ( seq M ( + , G ) ` N ) ) |