| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqcaopr3.1 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 2 |
|
seqcaopr3.2 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x Q y ) e. S ) |
| 3 |
|
seqcaopr3.3 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 4 |
|
seqcaopr3.4 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. S ) |
| 5 |
|
seqcaopr3.5 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. S ) |
| 6 |
|
seqcaopr3.6 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) Q ( G ` k ) ) ) |
| 7 |
|
seqcaopr3.7 |
|- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) .+ ( ( F ` ( n + 1 ) ) Q ( G ` ( n + 1 ) ) ) ) = ( ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) Q ( ( seq M ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) ) |
| 8 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
| 9 |
3 8
|
syl |
|- ( ph -> N e. ( M ... N ) ) |
| 10 |
|
fveq2 |
|- ( z = M -> ( seq M ( .+ , H ) ` z ) = ( seq M ( .+ , H ) ` M ) ) |
| 11 |
|
fveq2 |
|- ( z = M -> ( seq M ( .+ , F ) ` z ) = ( seq M ( .+ , F ) ` M ) ) |
| 12 |
|
fveq2 |
|- ( z = M -> ( seq M ( .+ , G ) ` z ) = ( seq M ( .+ , G ) ` M ) ) |
| 13 |
11 12
|
oveq12d |
|- ( z = M -> ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) = ( ( seq M ( .+ , F ) ` M ) Q ( seq M ( .+ , G ) ` M ) ) ) |
| 14 |
10 13
|
eqeq12d |
|- ( z = M -> ( ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) <-> ( seq M ( .+ , H ) ` M ) = ( ( seq M ( .+ , F ) ` M ) Q ( seq M ( .+ , G ) ` M ) ) ) ) |
| 15 |
14
|
imbi2d |
|- ( z = M -> ( ( ph -> ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) ) <-> ( ph -> ( seq M ( .+ , H ) ` M ) = ( ( seq M ( .+ , F ) ` M ) Q ( seq M ( .+ , G ) ` M ) ) ) ) ) |
| 16 |
|
fveq2 |
|- ( z = n -> ( seq M ( .+ , H ) ` z ) = ( seq M ( .+ , H ) ` n ) ) |
| 17 |
|
fveq2 |
|- ( z = n -> ( seq M ( .+ , F ) ` z ) = ( seq M ( .+ , F ) ` n ) ) |
| 18 |
|
fveq2 |
|- ( z = n -> ( seq M ( .+ , G ) ` z ) = ( seq M ( .+ , G ) ` n ) ) |
| 19 |
17 18
|
oveq12d |
|- ( z = n -> ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) = ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) ) |
| 20 |
16 19
|
eqeq12d |
|- ( z = n -> ( ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) <-> ( seq M ( .+ , H ) ` n ) = ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) ) ) |
| 21 |
20
|
imbi2d |
|- ( z = n -> ( ( ph -> ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) ) <-> ( ph -> ( seq M ( .+ , H ) ` n ) = ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) ) ) ) |
| 22 |
|
fveq2 |
|- ( z = ( n + 1 ) -> ( seq M ( .+ , H ) ` z ) = ( seq M ( .+ , H ) ` ( n + 1 ) ) ) |
| 23 |
|
fveq2 |
|- ( z = ( n + 1 ) -> ( seq M ( .+ , F ) ` z ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) |
| 24 |
|
fveq2 |
|- ( z = ( n + 1 ) -> ( seq M ( .+ , G ) ` z ) = ( seq M ( .+ , G ) ` ( n + 1 ) ) ) |
| 25 |
23 24
|
oveq12d |
|- ( z = ( n + 1 ) -> ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) = ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) ) |
| 26 |
22 25
|
eqeq12d |
|- ( z = ( n + 1 ) -> ( ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) <-> ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) ) ) |
| 27 |
26
|
imbi2d |
|- ( z = ( n + 1 ) -> ( ( ph -> ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) ) <-> ( ph -> ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) ) ) ) |
| 28 |
|
fveq2 |
|- ( z = N -> ( seq M ( .+ , H ) ` z ) = ( seq M ( .+ , H ) ` N ) ) |
| 29 |
|
fveq2 |
|- ( z = N -> ( seq M ( .+ , F ) ` z ) = ( seq M ( .+ , F ) ` N ) ) |
| 30 |
|
fveq2 |
|- ( z = N -> ( seq M ( .+ , G ) ` z ) = ( seq M ( .+ , G ) ` N ) ) |
| 31 |
29 30
|
oveq12d |
|- ( z = N -> ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) = ( ( seq M ( .+ , F ) ` N ) Q ( seq M ( .+ , G ) ` N ) ) ) |
| 32 |
28 31
|
eqeq12d |
|- ( z = N -> ( ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) <-> ( seq M ( .+ , H ) ` N ) = ( ( seq M ( .+ , F ) ` N ) Q ( seq M ( .+ , G ) ` N ) ) ) ) |
| 33 |
32
|
imbi2d |
|- ( z = N -> ( ( ph -> ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) ) <-> ( ph -> ( seq M ( .+ , H ) ` N ) = ( ( seq M ( .+ , F ) ` N ) Q ( seq M ( .+ , G ) ` N ) ) ) ) ) |
| 34 |
|
fveq2 |
|- ( k = M -> ( H ` k ) = ( H ` M ) ) |
| 35 |
|
fveq2 |
|- ( k = M -> ( F ` k ) = ( F ` M ) ) |
| 36 |
|
fveq2 |
|- ( k = M -> ( G ` k ) = ( G ` M ) ) |
| 37 |
35 36
|
oveq12d |
|- ( k = M -> ( ( F ` k ) Q ( G ` k ) ) = ( ( F ` M ) Q ( G ` M ) ) ) |
| 38 |
34 37
|
eqeq12d |
|- ( k = M -> ( ( H ` k ) = ( ( F ` k ) Q ( G ` k ) ) <-> ( H ` M ) = ( ( F ` M ) Q ( G ` M ) ) ) ) |
| 39 |
6
|
ralrimiva |
|- ( ph -> A. k e. ( M ... N ) ( H ` k ) = ( ( F ` k ) Q ( G ` k ) ) ) |
| 40 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
| 41 |
3 40
|
syl |
|- ( ph -> M e. ( M ... N ) ) |
| 42 |
38 39 41
|
rspcdva |
|- ( ph -> ( H ` M ) = ( ( F ` M ) Q ( G ` M ) ) ) |
| 43 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 44 |
3 43
|
syl |
|- ( ph -> M e. ZZ ) |
| 45 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , H ) ` M ) = ( H ` M ) ) |
| 46 |
44 45
|
syl |
|- ( ph -> ( seq M ( .+ , H ) ` M ) = ( H ` M ) ) |
| 47 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
| 48 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , G ) ` M ) = ( G ` M ) ) |
| 49 |
47 48
|
oveq12d |
|- ( M e. ZZ -> ( ( seq M ( .+ , F ) ` M ) Q ( seq M ( .+ , G ) ` M ) ) = ( ( F ` M ) Q ( G ` M ) ) ) |
| 50 |
44 49
|
syl |
|- ( ph -> ( ( seq M ( .+ , F ) ` M ) Q ( seq M ( .+ , G ) ` M ) ) = ( ( F ` M ) Q ( G ` M ) ) ) |
| 51 |
42 46 50
|
3eqtr4d |
|- ( ph -> ( seq M ( .+ , H ) ` M ) = ( ( seq M ( .+ , F ) ` M ) Q ( seq M ( .+ , G ) ` M ) ) ) |
| 52 |
51
|
a1i |
|- ( N e. ( ZZ>= ` M ) -> ( ph -> ( seq M ( .+ , H ) ` M ) = ( ( seq M ( .+ , F ) ` M ) Q ( seq M ( .+ , G ) ` M ) ) ) ) |
| 53 |
|
oveq1 |
|- ( ( seq M ( .+ , H ) ` n ) = ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) -> ( ( seq M ( .+ , H ) ` n ) .+ ( H ` ( n + 1 ) ) ) = ( ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) .+ ( H ` ( n + 1 ) ) ) ) |
| 54 |
|
elfzouz |
|- ( n e. ( M ..^ N ) -> n e. ( ZZ>= ` M ) ) |
| 55 |
54
|
adantl |
|- ( ( ph /\ n e. ( M ..^ N ) ) -> n e. ( ZZ>= ` M ) ) |
| 56 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , H ) ` n ) .+ ( H ` ( n + 1 ) ) ) ) |
| 57 |
55 56
|
syl |
|- ( ( ph /\ n e. ( M ..^ N ) ) -> ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , H ) ` n ) .+ ( H ` ( n + 1 ) ) ) ) |
| 58 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( H ` k ) = ( H ` ( n + 1 ) ) ) |
| 59 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
| 60 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( G ` k ) = ( G ` ( n + 1 ) ) ) |
| 61 |
59 60
|
oveq12d |
|- ( k = ( n + 1 ) -> ( ( F ` k ) Q ( G ` k ) ) = ( ( F ` ( n + 1 ) ) Q ( G ` ( n + 1 ) ) ) ) |
| 62 |
58 61
|
eqeq12d |
|- ( k = ( n + 1 ) -> ( ( H ` k ) = ( ( F ` k ) Q ( G ` k ) ) <-> ( H ` ( n + 1 ) ) = ( ( F ` ( n + 1 ) ) Q ( G ` ( n + 1 ) ) ) ) ) |
| 63 |
39
|
adantr |
|- ( ( ph /\ n e. ( M ..^ N ) ) -> A. k e. ( M ... N ) ( H ` k ) = ( ( F ` k ) Q ( G ` k ) ) ) |
| 64 |
|
fzofzp1 |
|- ( n e. ( M ..^ N ) -> ( n + 1 ) e. ( M ... N ) ) |
| 65 |
64
|
adantl |
|- ( ( ph /\ n e. ( M ..^ N ) ) -> ( n + 1 ) e. ( M ... N ) ) |
| 66 |
62 63 65
|
rspcdva |
|- ( ( ph /\ n e. ( M ..^ N ) ) -> ( H ` ( n + 1 ) ) = ( ( F ` ( n + 1 ) ) Q ( G ` ( n + 1 ) ) ) ) |
| 67 |
66
|
oveq2d |
|- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) .+ ( H ` ( n + 1 ) ) ) = ( ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) .+ ( ( F ` ( n + 1 ) ) Q ( G ` ( n + 1 ) ) ) ) ) |
| 68 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 69 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , G ) ` ( n + 1 ) ) = ( ( seq M ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) |
| 70 |
68 69
|
oveq12d |
|- ( n e. ( ZZ>= ` M ) -> ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) = ( ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) Q ( ( seq M ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) ) |
| 71 |
55 70
|
syl |
|- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) = ( ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) Q ( ( seq M ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) ) |
| 72 |
7 67 71
|
3eqtr4rd |
|- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) = ( ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) .+ ( H ` ( n + 1 ) ) ) ) |
| 73 |
57 72
|
eqeq12d |
|- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) <-> ( ( seq M ( .+ , H ) ` n ) .+ ( H ` ( n + 1 ) ) ) = ( ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) .+ ( H ` ( n + 1 ) ) ) ) ) |
| 74 |
53 73
|
imbitrrid |
|- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( seq M ( .+ , H ) ` n ) = ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) -> ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) ) ) |
| 75 |
74
|
expcom |
|- ( n e. ( M ..^ N ) -> ( ph -> ( ( seq M ( .+ , H ) ` n ) = ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) -> ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) ) ) ) |
| 76 |
75
|
a2d |
|- ( n e. ( M ..^ N ) -> ( ( ph -> ( seq M ( .+ , H ) ` n ) = ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) ) -> ( ph -> ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) ) ) ) |
| 77 |
15 21 27 33 52 76
|
fzind2 |
|- ( N e. ( M ... N ) -> ( ph -> ( seq M ( .+ , H ) ` N ) = ( ( seq M ( .+ , F ) ` N ) Q ( seq M ( .+ , G ) ` N ) ) ) ) |
| 78 |
9 77
|
mpcom |
|- ( ph -> ( seq M ( .+ , H ) ` N ) = ( ( seq M ( .+ , F ) ` N ) Q ( seq M ( .+ , G ) ` N ) ) ) |