Metamath Proof Explorer


Theorem seqcl

Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqcl.1
|- ( ph -> N e. ( ZZ>= ` M ) )
seqcl.2
|- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S )
seqcl.3
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S )
Assertion seqcl
|- ( ph -> ( seq M ( .+ , F ) ` N ) e. S )

Proof

Step Hyp Ref Expression
1 seqcl.1
 |-  ( ph -> N e. ( ZZ>= ` M ) )
2 seqcl.2
 |-  ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S )
3 seqcl.3
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S )
4 fveq2
 |-  ( x = M -> ( F ` x ) = ( F ` M ) )
5 4 eleq1d
 |-  ( x = M -> ( ( F ` x ) e. S <-> ( F ` M ) e. S ) )
6 2 ralrimiva
 |-  ( ph -> A. x e. ( M ... N ) ( F ` x ) e. S )
7 eluzfz1
 |-  ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) )
8 1 7 syl
 |-  ( ph -> M e. ( M ... N ) )
9 5 6 8 rspcdva
 |-  ( ph -> ( F ` M ) e. S )
10 eluzel2
 |-  ( N e. ( ZZ>= ` M ) -> M e. ZZ )
11 1 10 syl
 |-  ( ph -> M e. ZZ )
12 fzp1ss
 |-  ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) )
13 11 12 syl
 |-  ( ph -> ( ( M + 1 ) ... N ) C_ ( M ... N ) )
14 13 sselda
 |-  ( ( ph /\ x e. ( ( M + 1 ) ... N ) ) -> x e. ( M ... N ) )
15 14 2 syldan
 |-  ( ( ph /\ x e. ( ( M + 1 ) ... N ) ) -> ( F ` x ) e. S )
16 9 3 1 15 seqcl2
 |-  ( ph -> ( seq M ( .+ , F ) ` N ) e. S )