Step |
Hyp |
Ref |
Expression |
1 |
|
seqcl.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
2 |
|
seqcl.2 |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
3 |
|
seqcl.3 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
4 |
|
fveq2 |
|- ( x = M -> ( F ` x ) = ( F ` M ) ) |
5 |
4
|
eleq1d |
|- ( x = M -> ( ( F ` x ) e. S <-> ( F ` M ) e. S ) ) |
6 |
2
|
ralrimiva |
|- ( ph -> A. x e. ( M ... N ) ( F ` x ) e. S ) |
7 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
8 |
1 7
|
syl |
|- ( ph -> M e. ( M ... N ) ) |
9 |
5 6 8
|
rspcdva |
|- ( ph -> ( F ` M ) e. S ) |
10 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
11 |
1 10
|
syl |
|- ( ph -> M e. ZZ ) |
12 |
|
fzp1ss |
|- ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
13 |
11 12
|
syl |
|- ( ph -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
14 |
13
|
sselda |
|- ( ( ph /\ x e. ( ( M + 1 ) ... N ) ) -> x e. ( M ... N ) ) |
15 |
14 2
|
syldan |
|- ( ( ph /\ x e. ( ( M + 1 ) ... N ) ) -> ( F ` x ) e. S ) |
16 |
9 3 1 15
|
seqcl2 |
|- ( ph -> ( seq M ( .+ , F ) ` N ) e. S ) |